Formation of plasma channels in distilled water by femtosecond laser pulses in the mid-infrared range
Danilov P. A. 1, Pomazkin D. A.1, Matyaev I. D.2, Ilyushin P. Ya.1,3, Khmelnitsky R. A.1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Bauman Moscow State Technical University, Moscow, Russia
3Lomonosov Moscow State University, Moscow, Russia
Email: danilovpa@lebedev.ru, d.pomazkin@lebedev.ru, ivan.matyaev@mail.ru, ilusinpaul@gmail.com, khmelnitskyra@lebedev.ru

PDF
Experimental studies of the parameters of plasma channels formed in distilled water under the action of high power laser pulses with wavelengths of 1050, 1105, 1200, 1300, 1500, 1700 nm with durations of 130, 310, 100, 150, 110 and 80 fs, respectively, were carried out. As a result, the nonlinear refractive index of water was experimentally determined and the quadratic dependence of the critical self-focusing power on the pump wavelength was confirmed. The values of the critical self-focusing power for the wavelengths considered in this work are in the range of 3.8-17.8 MW. Keywords: Plasma channel, critical power for self-focusing, filamentation in water, ultrashort infrared laser pulses, nonlinear optics, distilled water.
  1. W. Liu, O.G. Kosareva, I.S. Golubtsov, A. Iwasaki, A. Becker, V.P. Kandidov, S.L. Chin. Appl. Phys. B, 76, 215 (2003). DOI: 10.1007/s00340-002-1087-1
  2. A. Braun, G. Korn, X. Liu, D. Du, J. Squier, G. Mourou. Opt. Lett., 20, 73 (1995). DOI: 10.1364/OL.20.000073
  3. A. Couairon, A. Mysyrowicz. Phys. Rep., 441 (2-4), 47 (2007). DOI: 10.1016/j.physrep.2006.12.005
  4. J. Kasparian, R. Sauerbrey, D. Mondelain, S. Niedermeier, J. Yu, J.-P. Wolf, Y.-B. Andre, M. Franco, B. Prade, S. Tzortzakis, A. Mysyrowicz, M. Rodriguez, H. Wille, L. Woste. Opt. Lett., 25 (18), 1397 (2000). DOI: 10.1364/OL.25.001397
  5. S.V. Chekalin, V.P. Kandidov. Phys. Usp., 56 (2), 123 (2013). DOI: 10.3367/UFNe.0183.201302b.0133
  6. S.M. Pershin, A.I. Vodchits, I.A. Khodasevich, V.A. Orlovich, A.D. Kudryavtseva, N.V. Tcherniega. Quantum Electron., 52 (3), 283 (2022). DOI: 10.1070/QEL18005
  7. P.A. Chizhov, M.Yu. Grishin, S.M. Pershin, V.N. Lednev, V.V. Bukin. Opt. Lett., 46 (11), 2686 (2021). DOI: 10.1364/OL.426104
  8. S.I. Kudryashov, A.O. Levchenko, P.A. Danilov, N.A. Smirnov, A.A. Ionin. Opt. Lett., 45 (7), 2026 (2020). DOI: 10.1364/OL.389348
  9. G. Fibich, A.L. Gaeta. Opt. Lett., 25 (5), 335 (2000). DOI: 10.1364/OL.25.000335
  10. J.H. Marburger, Prog. Quantum Electron., 4, 35 (1975). DOI: 10.1016/0079-6727(75)90003-8
  11. N.A. Smirnov, S.I. Kudryashov, A.A. Ionin. JETP, 135 (1), 44 (2022). DOI: 10.1134/S1063776122070068
  12. N.A. Smirnov, S.I. Kudryashov, A.A. Rudenko, A.A. Nastulyavichus, A.A. Ionin. Laser Phys. Lett., 19 (2), 026001 (2022). DOI: 10.1088/1612-202X/ac46ab
  13. D.V. Apeksimov, S.S. Golik, A.A. Zemlyanov, A.N. Iglakova, A.M. Kabanov, O.I. Kuchinskaya, G.G. Matvienko, V.K. Oshlakov, A.V. Petrov, E.B. Sokolova. Atmospheric Ocean. Opt., 29, 135 (2016). DOI: 10.1134/S1024856016020020
  14. Y. Zhang, Y. Xia, Y. Liang, A. Chen, S. Li, M. Jin. Sensors, 23 (22), 9163 (2023). DOI: 10.3390/s23229163
  15. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland. IEEE J. Quantum Electron., 26 (4), 760 (1990). DOI: 10.1109/3.53394
  16. C.B. Marble, J.E. Clary, G.D. Noojin, S.P.O'Connor, D.T. Nodurft, A.W. Wharmby, B.A. Rockwell, M.O. Scully, V.V. Yakovlev. Opt. Lett., 43 (17), 4196 (2018). DOI: 10.1364/OL.43.004196
  17. V. Shcheslavskiy, G. Petrov, V.V. Yakovlev. Appl. Phys. Lett., 82 (22), 3982 (2003). DOI: 10.1063/1.1579866
  18. R. Goldstein, S.S. Penner. J. Quant. Spectrosc. Radiat. Transfer, 4 (3), 441 (1964). DOI: 10.1016/0022-4073(64)90005-6
  19. Y.S. Gulina, J. Zhu, G.K. Krasin, E.V. Kuzmin, S.I. Kudryashov. Photonics, 10 (10), 1177 (2023). DOI: 10.3390/photonics10101177
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru