Physics of the Solid State
Volumes and Issues
Ab initio calculation of the structure and frequency dependences of dielectric properties of new semiconductors TlIn1-xTmxS2 (x=0.001 and 0.005)
Mustafaeva S. N.1, Asadov S. M.2,3, Huseynova S. S.1,4
1Institute of Physics of the IOA, Baku, Azerbaijan
2Nagiev Institute of Catalysis and Inorganic Chemistry of Azerbaijan National Academy of Sciences, Baku, Azerbaijan
3Nagiyev Institute of Catalysis and Inorganic Chemistry, Azerbaijan National Academy of Sciences, Baku, Azerbaijan
4Khazar University, Baku, Azerbaijan
Email: solmust@gmail.com

PDF
The monoclinic structure TlIn1-xTmxS2 was studied based on the density functional theory (DFT). The cases of substitution of indium atoms with thulium are considered. The lattice cell parameters were determined in optimized supercells TlInS2 taking into account the approximation of the local density. Lattice constants for a layered crystal TlIn1-xTmxS2 were theoretically determined based on calculations of a monoclinic structure with a space group C/2c (coordination number Z=16, N 15) and compared with experimental results. New semiconductor polycrystals of TlIn1-xTmxS2 (x=0, 0.001 and 0.005) compositions were synthesized in quartz ampoules and corresponding single crystals were grown from them by directional solidification method. Analysis of X-ray diffraction patterns shows that all compositions TlIn1-xTmxS2 have stable monoclinic crystal system with space group C/2c. The calculated parameters of the lattice cell of TlIn1-xTmxS2 samples confirm this. Dielectric properties in alternating electric fields with a frequency of f=5· 10^4-3.5·107 Hz at room temperature were studied in single crystals. The relaxation character of the dielectric constant, the nature of dielectric losses, and the hopping mechanism of charge transfer in TlIn1-xTmxS2 samples were determined. The parameters of localized states in crystals of TlIn1-xTmxS2 samples were calculated using the Mott model. It was shown that, the AC conductivity, the density of localized states near the Fermi level, the average distance and time of charge carrier hops in TlIn1-xTmxS2 increase compared with the undoped TlInS2. Keywords: monoclinic structure, DFT LDA, single crystal TlInS2, doping impact, thulium impurity, lattice cell parameters, permittivity, hopping conductance, frequency dispersion, dielectric losses.
  1. S.N. Mustafaeva, M.M. Asadov. Phys. Solid State 51, 11, 1999 (2004). https://doi.org/10.1134/S1063783419110246
  2. O.B. Plyushch, A.U. Sheleg. Crystal. Reports 44, 5, 813 (1999)
  3. T. Babuka, O.O. Gomonnaic, K.E. Glukhov, L.Yu. Kharkhalis, M. Sznajder, D.R.T. Zahn. Acta Phys. Pol. A 136, 4, 640 (2019). https://doi.org/10.12693/APhysPolA.136
  4. W. Henkel, H.D. Hochheimer, C. Carlone, A. Werner, S. Ves, H.G. von Schnering. Phys. Rev. B 26, 6, 3211 (1982). https://doi.org/10.1103/PhysRevB.26.3211
  5. H. Hahn, B. Wellman. Sci. Nature 54, 2, 42 (1967). https://doi.org/10.1007/bf00680166
  6. K.-J. Range, G. Engert, W.A. Muller, A. Weiss. Z. Naturforsch B. 29, 181 (1974). https://doi.org/10.1515/znb-1974-3-410
  7. T.J. Isaacs, J.D. Feichtner. J. Solid State Chem. 14, 3, 260 (1975). https://doi.org/10.1016/0022-4596(75)90030-4
  8. Project 2D Materials Encyclopedia. TlInS2. mp-632539. https://next-gen.materialsproject.org/materials/mp-632539/
  9. S.N. Mustafaeva, M.M. Asadov. Phys. Solid State 51, 11, 2269 (2009). https://doi.org/10.1134/S1063783409110122
  10. A.U. Sheleg, V.V. Shautsova, V.G. Hurtavy, S.N. Mustafaeva. J. Surf. Invest.: X-Ray, Synchrotron and Neutron Techniques. 7, 6, 1052 (2013). https://doi.org/10.1134/s1027451013060190
  11. S.N. Mustafaeva, M.M. Asadov, S.S. Huseynova, N.Z. Gasanov, V.F. Lukichev. Phys. Solid State 64, 6, 617 (2022). https://doi.org/ 10.21883/PSS.2022.06.53823.299
  12. S. Kashida, Y. Kobayashi. J. Phys. Condens. Matter 11, 4, 1027 (1999). https://doi.org/10.1088/0953-8984/11/4/010
  13. O.V. Korolik, S.A. Kaabi, K. Gulbinas, A.V. Mazanik, N.A. Drozdov, V. Grivickas. J. Lumin. 187, 507 (2017). https://doi.org/10.1016/j.jlumin.2017.03.065
  14. V. Grivickas, P. Scajev, V. Bikbajevas, O.V. Korolik, A.V. Mazanik. Phys. Chem. Chem. Phys. 21, 2102 (2019). https://doi.org/ 10.1039/c8cp06209a
  15. M. Isik, N.M. Gasanly, F. Korkmaz. Phys. B: Condens. Matter 421, 50 (2013). https://doi.org/10.1016/j.physb.2013.03.046
  16. A.F. Qasrawi, N.M. Gasanly. J. Mater. Sci. 41, 3569 (2006). https://doi.org/10.1007/s10853-005-5618-0
  17. K.R. Allakhverdiev, N.D. Akhmed-zade, T.G. Mamedov, T.S. Mamedov, Mir-Gasan Yu. Seidov. Low Temp. Phys. 26, 1, 56 (2000). https://doi.org/10.1063/1.593863
  18. M.M. El-Nahass, M.M. Sallam, A.H.S. Abd Al-Wahab. Curr. Appl. Phys. 9, 2, 311 (2009). https://doi.org/10.1016/j.cap.2008.02.011
  19. S.N. Mustafaeva, M.M. Asadov, S.S. Huseynova, N.Z. Hasanov, V.F. Lukichev. Phys. Solid State 64, 6, 617 (2022). https://doi.org/10.21883/PSS.2022.06.53823.299
  20. N.F. Mott, E.A. Davis. Electronic Processes in Non-Crystalline Materials. OUP, Oxford, (2012). 590 p. ISBN: 9780199645336
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru