Zinatullin E. R.
1, Korolev S. B.
1,2, Golubeva T. Yu.
11St. Petersburg State University, St. Petersburg, Russia
2South Ural State University (National Research University), Chelyabinsk, Russia
Email: e.r.zinatullin@mail.ru, sergey.koroleev@gmail.com, tania.golubeva@gmail.com
The paper considers a strategy to decrease the error of the two-mode entanglement transformation Controlled-Z by introducing non-Gaussian nodes in the cluster. Non-Gaussian nodes are obtained by using a cubic phase gate. We have shown that this strategy can significantly decrease the transformation error. The considered implementation of the Controlled-Z operation contains a teleportation scheme with the cubic phase gate. We have shown that the correct selection of phases during measurement allows for lower errors than in the initial teleportation protocol with the cubic phase gate and the original teleportation protocol. Keywords: one-way quantum computation, continuous variables, two-mode operations, cubic phase gate, non-Gaussian transformations, teleportation.
- N.C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T.C. Ralph, M.A. Nielsen. Phys. Rev. Lett. 97, 110501 (2006). DOI: 10.1103/PhysRevLett.97.110501
- R. Raussendorf, H.J. Briegel. Phys. Rev. Lett. 86, 5188 (2001). DOI: 10.1103/PhysRevLett.86.5188
- M.A. Nielsen. Reports on Mathematical Physics 57, 147 (2006). DOI: 10.1016/S0034-4877(06)80014-5
- S. Yokoyama, R. Ukai, S.C. Armstrong, C. Sornphiphatphong, T. Kaji, S. Suzuki, J.-i. Yoshikawa, H. Yonezawa, N.C. Menicucci, A. Furusawa. Nat. Photon. 7, 982 (2013). DOI: 10.1038/nphoton.2013.287
- J. Roslund, R.M. de Araujo, S. Jiang, C. Fabre, N. Treps. Nat. Photon. 8, 109 (2014). DOI: 10.1038/nphoton.2013.340
- M. Chen, N.C. Menicucci, O. Pfister. Phys. Rev. Lett. 112, 120505 (2014). DOI: 10.1103/PhysRevLett.112.120505
- J.-i. Yoshikawa, S. Yokoyama, T. Kaji, C. Sornphiphatphong, Y. Shiozawa, K. Makino, A. Furusawa. APL Photon. 1, 060801 (2016). DOI: 10.1063/1.4962732
- M.V. Larsen, X. Guo, C.R. Breum, J.S. Neergaard-Nielsen, U.L. Andersen. Science 366, 369 (2019). DOI: 10.1126/science.aay4354
- W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R.N. Alexander, S. Takeda, J.-i. Yoshikawa, N.C. Menicucci, H. Yonezawa, A. Furusawa. Science 366, 373 (2019). DOI: 10.1126/science.aay2645
- H. Vahlbruch, M. Mehmet, K. Danzmann, R. Schnabel. Phys. Rev. Lett. 117, 110801 (2016). DOI: 10.1103/PhysRevLett.117.110801
- N.C. Menicucci. Phys. Rev. Lett. 112, 120504 (2014). DOI: 10.1103/PhysRevLett.112.120504
- E.R. Zinatullin, S.B. Korolev, A.D. Manukhova, T.Yu. Golubeva. Phys. Rev. A 106, 032414 (2022). DOI: 10.1103/PhysRevA.106.032414
- D. Gottesman, A. Kitaev, J. Preskill. Phys. Rev. A 64, 012310 (2001). DOI: 10.1103/PhysRevA.64.012310
- S. Lloyd, S.L. Braunstein. Phys. Rev. Lett. 82, 1784 (1999). DOI: 10.1103/PhysRevLett.82.1784
- S.L. Braunstein, P. van Loock. Rev. Mod. Phys. 77, 513 (2005). DOI: 10.1103/RevModPhys.77.513
- M.V. Larsen, J.S. Neergaard-Nielsen, U.L. Andersen. Phys. Rev. A 102, 042608 (2020). DOI: 10.1103/PhysRevA.102.042608
- D. Su, C. Weedbrook, K. Bradler. Phys. Rev. A 98, 042304 (2018). DOI: 10.1103/PhysRevA.98.042304
- R.N. Alexander, S.C. Armstrong, R. Ukai, N.C. Menicucci. Phys. Rev. A 90, 062324 (2014). DOI: 10.1103/PhysRevA.90.062324
- A.T. Rezakhani. Phys. Rev. A 70, 052313 (2004). DOI: 10.1103/PhysRevA.70.052313
- S.B. Korolev, T.Yu. Golubeva, Yu.M. Golubev. Laser Phys. Lett. 17, 055205 (2020). DOI: 10.1088/1612-202X/ab83ff
- P. van Loock, C. Weedbrook, M. Gu. Phys. Rev. A 76, 032321 (2007). DOI: 10.1103/PhysRevA.76.032321
- M. Gu, C. Weedbrook, N.C. Menicucci, T.C. Ralph, P. van Loock. Phys. Rev. A 79, 062318 (2009). DOI: 10.1103/PhysRevA.79.062318
- E.R. Zinatullin, S.B. Korolev, T.Yu. Golubeva. Phys. Rev. A 103, 062407 (2021). DOI: 10.1103/PhysRevA.103.062407
- E.R. Zinatullin, S.B. Korolev, T.Yu. Golubeva. Phys. Rev. A 104, 032420 (2021). DOI: 10.1103/PhysRevA.104.032420
- S.B. Korolev, T.Yu. Golubeva, Yu.M. Golubev. Laser Phys. Lett. 17, 035207 (2020). DOI: 10.1088/1612-202X/ab6ffe
- M. Yukawa, K. Miyata, H. Yonezawa, P. Marek, R. Filip, A. Furusawa. Phys. Rev. A 88, 053816 (2013). DOI: 10.1103/PhysRevA.88.053816
- M. Kudra, M. Kervinen, I. Strandberg, S. Ahmed, M. Scigliuzzo, A. Osman, D.P. Lozano, M.O. Tholen, R. Borgani, D.B. Haviland, G. Ferrini, J. Bylander, A.F. Kockum, F. Quijandri a, P. Delsing, S. Gasparinetti. PRX Quantum 3, 030301 (2022). DOI: 10.1103/PRXQuantum.3.030301
- S. Ghose, B.C. Sanders. J. Mod. Opt. 54, 855 (2007). DOI: 10.1080/09500340601101575
- Y. Zheng, O. Hahn, P. Stadler, P. Holmvall, F. Quijandri a, A. Ferraro, G. Ferrini. PRX Quantum 2, 010327 (2021). DOI: 10.1103/PRXQuantum.2.010327
- W. Asavanant, K. Takase, K. Fukui, M. Endo, J.-i. Yoshikawa, A. Furusawa. Phys. Rev. A 103, 043701 (2021). DOI: 10.1103/PhysRevA.103.043701
- K. Marshall, R. Pooser, G. Siopsis, C. Weedbrook. Phys. Rev. A 91, 032321 (2015). DOI: 10.1103/PhysRevA.91.032321
- K. Miyata, H. Ogawa, P. Marek, R. Filip, H. Yonezawa, J.-i. Yoshikawa, A. Furusawa. Phys. Rev. A 93, 022301 (2016). DOI: 10.1103/PhysRevA.93.022301
- R. Yanagimoto, T. Onodera, E. Ng, L.G. Wright, P.L. McMahon, H. Mabuchi. Phys. Rev. Lett. 124, 240503 (2020). DOI: 10.1103/PhysRevLett.124.240503
- T. Hillmann, F. Quijandri a, G. Johansson, A. Ferraro, S. Gasparinetti, G. Ferrini. Phys. Rev. Lett. 125, 160501 (2020). DOI: 10.1103/PhysRevLett.125.160501
- S. Konno, A. Sakaguchi, W. Asavanant, H. Ogawa, M. Kobayashi, P. Marek, R. Filip, J.-i. Yoshikawa, A. Furusawa. Phys. Rev. Applied 15, 024024 (2021). DOI: 10.1103/PhysRevApplied.15.024024
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.