Temperature dispersions of refractive indices and absorption coefficients of mercury thiogallate crystals in the terahertz frequency range
Stroganova E. V.1, Badikov D. V.1, Shevyrdyaeva G. S.1, Galutskiy V. V.1
1Kuban State University, Krasnodar, Russia
Email: stroganova@kubsu.ru

PDF
THz absorption and refraction spectra of HgGa2S4 crystals of various compositions in the temperature range of 300-400 K have been studied, and a change in refractive indices for crystals depending on their stoichiometry has been found. For non-stoichiometric and stoichiometric samples, Δ n/Δ T varies more than twice from 1.3·10-4 to 3.1·10-4 K-1. The absorption coefficient of the studied samples in the range 0.5-1.2 THz was less than 20 cm-1. The change in the refractive index of HgGa2S4 in the range 0.5-1.2 THz was 3.42-3.55 at T=300 K. Keywords: mercury thiogallate, terahertz spectrum, stoichiometry.
  1. A.P. Aji, C. Apriono, E.T. Rahardjo. IEEE Access, 11, 29323 (2023). DOI: 10.1109/ACCESS.2023.3260213
  2. G. Marchev, M. Reza, V. Badikov, A. Esteban-Martin, G. Stoppler, M. Starikova, D. Badikov, V. Panyutin, M. Eichhorn, G. Shevyrdyaeva, A. Tyazhev, S. Sheina, A. Agnesi, A. Fintisova, V. Petrov. In: CLEO Applications and Technology 2014: QELS Fundamental Science, (Optica, 2014), p. JTu4A.113. DOI: 10.1364/CLEO_AT.2014.JTu4A.113
  3. S. Popien, M. Beutler, I. Rimke, D. Badikov, V. Badikov, V. Petrov. Optical Engin., 57 (11), 111802 (2018). DOI: 10.1117/1.oe.57.11.111802
  4. V.V. Badikov, A.K. Don, K.V. Mitin, A.M. Seregin, V.V. Sinaiskii, N.I. Schebetova, T.A. Shchetinkina. Quantum Electronics, 37 (4), 363 (2007). DOI: 10.1070/QE2007v037n04ABEH013376
  5. H. Qiao, K. Zhong, F. Li, X. Zhang, Z. Yuan, B. Kang, D. Xu, J. Yao. Opt. Mat., 119, 111300 (2021). DOI: 10.1016/j.optmat.2021.111300
  6. W. Qiao, H. Cankaya, A. Hartin, F. Ahr, T. Kroh, P.G. Schunemann, K. Zawilski, N.H. Matlis, F.X. Kartner. Conference on Lasers and Electro-Optics OSA Technical Digest (online) (Optica, 2018), p. JTu2A.116. DOI: 10.1364/CLEO_AT.2018.JTu2A.116
  7. B.N. Carnio, K.T. Zawilski, P.G. Schunemann, A.Y. Elezzabi. Proc. SPIE 11279, 1127913 (2020). DOI: 10.1117/12.2546516
  8. V.V. Galutskiy, S.S. Ivashko. J. Optical Technology, 87 (1), 55 (2020). DOI: 10.1364/JOT.87.000050
  9. L. Palfalvi, J. Hebling, J. Kuhl, A. Peter, K. Polgar. J. Appl. Phys., 97 (12), 123505 (2005). DOI: 10.1063/1.1929859
  10. G. Gallot, J. Zhang, R.W. McGowan, T.-I. Jeon, D. Grischkowsky. Appl. Phys. Lett., 74 (23), 3450 (1999). DOI: 10.1063/1.124124
  11. S. Tochitsky, C. Sung, S. Trubnick, C. Joshi, K. Vodopyanov. JOSA B: Opt. Phys. 24, 2509 (2007). DOI: 10.1364/JOSAB.24.002509

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru