Orlov Yu. S.
1,2, Vereshchagin S. N.3, Solovyov L. A.3, Borus A. A.2, Nikitin A. V.4, Bushinsky M. V.4, Zharkov S.M.1,2, Zeer G. M.1, Bondarev V. S.1,2, Ustyuzhanin Yu. N.2, Volochaev M. N.2, Dudnikov V. A.2
1Siberian Federal University, Krasnoyarsk, Russia
2Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
3Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, Russian Academy of Sciences, Krasnoyarsk, Russia
4Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
Email: jso.krasn@mail.ru
The influence of high-energy mechanical activation on the thermoelectric properties of polycrystalline Dy0.075Sr0.925Ti1-xPxO3 (x=0, 0.01, 0.025) samples has been studied. The synthesized solid solutions have a negative Seebeck coefficient, increasing almost linearly in absolute value with increasing temperature. For all samples, a change in the type of electrical conductivity from semiconductor to metallic is observed. A comparative analysis of the results obtained in the temperature range of 300-800 K showed a significant decrease in electrical resistivity with a slight change in the Seebeck coefficient, increasing the thermoelectric power factor to 12.2 μW/(cm·K^2) at x=0. Despite the increase in thermal conductivity measured at temperature 300-673 K, thermoelectric figure of merit ZT of mechanically activated samples at T=670 K is higher than that of those not subjected to mechanical activation. The value of figure of merit ZT=0.31 obtained for x=0 is one of the highest reported in the literature for thermoelectrics based on SrTiO3 at this temperature. Replacing titanium with phosphorus does not improve thermoelectric characteristics. A tendency towards a decrease in electrical resistance and an increase in thermal conductivity as a result of mechanical activation is observed for all studied samples. Keywords: thermoelectricity, electron microscopy, mechanical activation, solid solutions.
- X. Li, H. Zhao, D. Luo, K. Huang. Mater. Lett. 65, 2624 (2011)
- Q. Ma, F. Tietz, D. Stover. Solid State Ionics 192, 535 (2011)
- C. Savaniu, J. Irvine. Solid State Ionics 192, 491 (2011)
- D. Fagg, V. Kharton, A. Kovalevsky, A. Viskup, E. Naumovich, J. Frade. J. Eur. Ceram. Society 21, 1831 (2001)
- O.A. Marina, N.L. Canfield, J.W. Stevenson. Solid State Ionics 149, 21 (2002)
- S. Singh, P. Singh, M. Viviani, S. Presto. Int. J. Hydrogen Energy 43, 19242 (2018)
- H. Muta, K. Kurosaki, S. Yamanaka. J. Alloys Comp. 350, 292 (2003)
- K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, R. Funahashi. Ann. Rev. Mater. Res. 40, 363 (2010)
- A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, A. Weidenkaff, J.R. Frade. J. Appl. Phys. 113, 053704 (2013)
- D. Srivastava, C. Norman, F. Azough, M.C. Schrhfer, E. Guilmeau, R. Freer. J. Alloys Comp. 731, 723 (2018)
- C.-S. Park, M.-H. Hong, H.H. Cho, H.-H. Park. J. Eur. Ceram. Soc. 38, 125 (2018)
- T. Okuda, K. Nakanishi, S. Miyasaka, Y. Tokura. Phys. Rev. B 63, 113104 (2001)
- J. Liu, C. Wang, W. Su, H. Wang, J. Li, J. Zhang, L. Mei. J. Alloys Comp. 492, L54 (2010)
- H. Wang, C. Wang, W. Su, J. Liu, Y. Zhao, H. Peng, J. Zhang, M. Zhao, J. Li, N. Yin, L. Mei. Mater. Res. Bull. 45, 809 (2010)
- X. Li, H. Zhao, D. Luo, K. Huang. Mater. Lett. 65, 2624 (2011)
- Z. Lu, H. Zhang, W. Lei, D.C. Sinclair, I.M. Reaney. Chem. Mater. 28, 925 (2016)
- C. Chen, T. Zhang, R. Donelson, T.T. Tan, S. Li. J. Alloys Comp. 629, 49 (2015)
- J. Han, Q. Sun, Y. Song. J. Alloys Comp. 705, 22 (2017)
- M. Qin, Z. Lou, P. Zhang, Z. Shi, J. Xu, Y. Chen, F. Gao. ACS Appl. Mater. Interfaces 12, 53899 (2020)
- D. Srivastava, C. Norman, F. Azough, M.C. Schafer, E. Guilmeau, R. Freer. J.Alloys Comp. 731, 723 (2018)
- M. Qin, F. Gao, G. Dong, J. Xu, M. Fu, Y. Wang, M. Reece, H. Yan. J. Alloys Comp. 762, 80 (2018)
- F. Azough, A. Gholinia, D.T. Alvarez-ruiz, E. Duran, D.M. Kepaptsoglou, A. Eggeman, Q.M. Ramasse, R. Freer. ACS Appl. Mater. Interfaces 11, 32833 (2019)
- J. Wang, B.-Y. Zhang, H.-J. Kang, Y. Li, X. Yaer, J.-F. Li, Q. Tan, S. Zhang, G.-H. Fan, C.-Y. Liu, L. Miao, D. Nan, T.-M. Wang, L.-D. Zhao. Nano Energy 35, 387 (2017)
- J. Liu, C.L. Wang, Y. Li, W.B. Su, Y.H. Zhu, J.C. Li, L.M. Mei. J. Appl. Phys. 114, 223714 (2013)
- Yu. Orlov, S. Vereshchagin, S. Novikov, A. Burkov, A. Borus, M. Sitnikov, L. Solovyov, M. Volochaev, V. Dudnikov. Ceram. Int. 47, 28992 (2021)
- K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, R. Funahashi. Annu. Rev. Mater. Res. 40, 363 (2010)
- K. H. Lee, S. W. Kim, H. Ohta, K. Koumoto. J. Appl. Phys. 100, 063717 (2006)
- Y. Zhu, W. Zhou, J. Sunarso, Y. Zhong, Z. Shao. Adv. Func. Mater. 26, 5862 (2016)
- A. Burkov, A. Fedotov, A. Kasyanov, R. Panteleev, T. Nakama. Sci. Tech. J. Inform. Technol. Mech. Opt. 15, 173 (2015)
- R.D. Shannon. Acta Crystallographica A 32, 751 (1976)
- Yu.S. Orlov, S. Vereshchagin, L. Solovyov, A. Borus, M. Volochaev, A. Nikitin, M. Bushinsky, R. Lanovsky, G. Rymski, V. Dudnikov. J. Taiwan Institute Chem. Eng. 138, 104449 (2022)
- H. Ohta. Mater. Today 10, 44 (2007)
- S. Ohta, T. Nomura, H. Ohta, M. Hirano, H. Hosono, K. Koumoto. Appl. Phys. Lett. 87, 092108 (2005)
- H. Wang, C. Wang, W. Su, J. Liu, H. Peng, Y. Sun, J. Zhang, M. Zhao, J. Li, N. Yin, L. Mei. Ceram. Int. 37, 2609 (2011)
- A.M. Dehkordi, S. Bhattacharya, J. He, H.N. Alshareef, T.M. Tritt. Appl. Phys. Lett. 104, 193902 (2014)
- A.V. Kovalevsky, A.A. Yaremchenko, S. Populoh, P. Thiel, D.P. Fagg, A. Weidenkaff, J.R. Frade. Phys. Chem. Chem. Phys. 16, 26946 (2014)
- M. T. Buscaglia, F. Maglia, U. Anselmi-Tamburini, D. Marre, I. Pallecchi, A. Ianculescu, G. Canu, M. Viviani, M. Fabrizio, V. Buscaglia. J. Eur. Ceram. Society 34, 307 (2014)
- Y. Wang, H.J. Fan. Scripta Materialia 65, 190 (2011)
- P. Roy, V. Pal, T. Maiti. Ceram. Int. 43, 12809 (2017).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.