Physics of the Solid State
Volumes and Issues
Thermoelectric figure of merit enhancement of solid solutions based on SrTiO3 by mechanical activation
Orlov Yu. S. 1,2, Vereshchagin S. N.3, Solovyov L. A.3, Borus A. A.2, Nikitin A. V.4, Bushinsky M. V.4, Zharkov S.M.1,2, Zeer G. M.1, Bondarev V. S.1,2, Ustyuzhanin Yu. N.2, Volochaev M. N.2, Dudnikov V. A.2
1Siberian Federal University, Krasnoyarsk, Russia
2Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
3Institute of Chemistry and Chemical Technology, Federal Research Center KSC SB RAS, Russian Academy of Sciences, Krasnoyarsk, Russia
4Scientific and Practical Materials Research Center, National Academy of Sciences of Belarus, Minsk, Belarus
Email: jso.krasn@mail.ru

PDF
The influence of high-energy mechanical activation on the thermoelectric properties of polycrystalline Dy0.075Sr0.925Ti1-xPxO3 (x=0, 0.01, 0.025) samples has been studied. The synthesized solid solutions have a negative Seebeck coefficient, increasing almost linearly in absolute value with increasing temperature. For all samples, a change in the type of electrical conductivity from semiconductor to metallic is observed. A comparative analysis of the results obtained in the temperature range of 300-800 K showed a significant decrease in electrical resistivity with a slight change in the Seebeck coefficient, increasing the thermoelectric power factor to 12.2 μW/(cm·K^2) at x=0. Despite the increase in thermal conductivity measured at temperature 300-673 K, thermoelectric figure of merit ZT of mechanically activated samples at T=670 K is higher than that of those not subjected to mechanical activation. The value of figure of merit ZT=0.31 obtained for x=0 is one of the highest reported in the literature for thermoelectrics based on SrTiO3 at this temperature. Replacing titanium with phosphorus does not improve thermoelectric characteristics. A tendency towards a decrease in electrical resistance and an increase in thermal conductivity as a result of mechanical activation is observed for all studied samples. Keywords: thermoelectricity, electron microscopy, mechanical activation, solid solutions.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru