Physics of the Solid State
Volumes and Issues
Influence of field frequency during plasma-chemical deposition on the structure and properties of silicon-carbon coatings
Popov A. I. 1, Barinov A. D. 1, Edelbecova P. A.2, Yemets V. M. 1, Miroshnicova I. N. 1, Chukanova T. S.1
1National Research University «Moscow Power Engineering Institute», Moscow, Russia
2 Institute of Nanotechnology of Microelectronics, Russian Academy of Sciences, Moscow, Russia
Email: popovai2009@gmail.com, barinovad@mpei.ru, polinaedel51@gmail.com, vyemets@mail.ru, miroshnicovain@mpei.ru, danetch@inbox.ru

PDF
The results of the electrophysical, mechanical properties, surface morphology and structure studies of silicon-carbon coatings prepared by plasma-chemical deposition of an organosilicon precursor at different frequencies of the axial electric field are presented. It is shown that the reason for changes in the characteristics of coatings with variations in the field frequency is a change in the ratio of the concentrations of carbon atoms with different hybridization of electron orbitals. The dependences of all studied characteristics on the field frequency have two different sections. At frequencies from 0.1 to 1.0 MHz, significant and non-monotonic changes in the properties of coatings are observed with variations in the frequency of the electric field. At frequencies above 1.0 MHz, the properties of the resulting coatings are practically independent of frequency. Based on an analysis of physical properties and Raman spectroscopy studies, a model of coating structure evolution with a change in the field frequency during their deposition is proposed. Keywords: silicon-carbon coatings, chemical composition, phase composition, electrical conductivity, elastic modulus, Raman spectra, carbon atoms, electron orbitals hybridization.
  1. A. Popov. Disordered Semiconductors: Physics and Applications. 2d ed. Pan Stanford Publ. (2018). 327 p
  2. A.D. Barinov, A.I. Popov, M.Yu. Presnyakov. Neorgan. materialy 53, 706 (2017). (in Russian)
  3. A.I. Popov, V.P. Afanasiev, A.D. Barinov, Yu.N. Bodisko, A.S. Gryazev, I.N. Miroshnikova, M.Yu. Presnyakov, M.L. Shupegin. Poverkhnost. Rentgenovskie, Sinkhrotronnye Neitr. Issled., 9. 49, 2019 (2023). (in Russian)
  4. A.S. Grenaderov, A.A. Soloviev, K.V. Oskomov, M.O. Zhul'kov. ZhTF 91, 1286 (2021). (in Russian)
  5. A.I. Popov, A.D. Barinov, V.M. Emets, T.S. Tchukanova, M.L. Shupegin. FTT 62, 1612 (2020). (in Russian)
  6. E.V. Zavedeev, O.S. Zilova, A.D. Barinov. Diamond Rel. Mater. 74, 45 (2017)
  7. A.A. Sherchenkov. Materialy elektronnoy tekhniki, 48 (2003), 168 (2019). (in Russian)
  8. T. Yamaguchi, N. Sakamoto, H. Tagashira. J. Appl. Phys. 83, 554 (1998)
  9. M. Shimozuma, K. Kitamori, H. Ohno, H. Hasegawa, H.J. Tagashira. Electron. Mater. 14, 573 (1985)
  10. Odnomernye parametry sherokhovatosti [Electronnyi resurs] / Rukovodstvo pol'zovatelya Gwyddion. Available at: http://gwyddion.net/documentation/user-guide-ru/roughness-iso.html
  11. S.G. Lakeev, P.I. Misurkin, Yu.S. Polyakov, S.F. Timashev. Fluktuatsionnye i degradatsionnye protsessy v poluprovodnikovykh priborakh. Sb. nauch. tr. MEI, M. (2011), P. 5. (in Russian)
  12. A.C. Ferrari, J. Robertson. Phys. Rev. B 61, 14095 (2000)
  13. A.S. Grenadyorov, A.A. Solovyev, V.O. Oskirko, K.V. Oskomov, V.A. Semenov, V.S. Sypchenko, A.A. Saraev. Vacuum. 219, part A. 112706 (2024)
  14. V. Uskokovic. Carbon Trends 5, 100116 (2021)
  15. T.G. Shumilova. Almaz, grafit, karbin, fulleren i drugie modifikatsii ugleroda. UrO RAN, Yekaterinburg (2002), 88 p. (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru