Labzovskaya M. E.1, Novikov B. V.1, Serov. A. Yu.1, Mikushev S. V.1, Kadinskaya S. A.2,3, Kondratiev V. M.2,3, Bolshakov A. D.2,3, Likhachev A. I.4, NaschekinA. V.4, Samosenko Yu. B.2,5, Shtrom I. V.1,5
1St. Petersburg State University, St. Petersburg, Russia
2Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
3Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudnyi, Russia
4Ioffe Institute, St. Petersburg, Russia
5Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
Email: xrul@mail.ru, bono1933@mail.ru
The possibility of laser generation was found in nanocrystalline ZnO samples of various morphologies grown using the hydrothermal growth method. It is shown that at a high optical excitation density, the arrays of ZnO nanowires forming the surface of the samples are self-organizing systems demonstrating random laser radiation generation with a relatively low excitation threshold. The relationship between the generation occurrence and the morphology of nanocrystals has been established. Possible generation mechanisms are discussed. Keywords: zinc oxide, hydrothermal synthesis, nanowhiskers, random laser generation.
- D.C. Look, B. Claflin, Y.I. Alivov, S.J. Park. Phys. Status Solidi 201, 2203 (2004)
- S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu. J. Nature Nanotechnol. 6, 506 (2011)
- J.H. Na, M. Kitamura, M. Arita, Y. Arakawa. Appl. Phys. Lett. 95, 253303 (2009)
- U. Ozgur, Ya.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, H. Morkoc. J. Appl. Phys. 98, 04130 (2005)
- S.F. Yu, Clement Yuen, S.P. Lau, W.I. Park, Gyu-Chul Yi. Appl. Phys. Lett. 84, 3241 (2004)
- A.N. Gruzintsev, A.N. Redkin, Z.I. Makovey, E.E. Yakimov, C. Barthou. FTP 41, 6, 730 (2007). (in Russian)
- I.Kh. Akopyan, B.V. Novikov, A.Yu. Serov. FTT 63, 12, 2157 (2021). (in Russian)
- N. Vasilyev, E.N. Borisov, B.V. Novikov, I.Kh. Akopyan. J. Luminescence 215, 116668 (2019)
- Nikolay Vasilyev, B.V. Novikov, I.Kh. Akopyan, M.E. Labzovskaya. J. Luminescence 182, 45 (2017)
- S. Kadinskaya, V. Kondratev, I. Kindyushov, O. Koval, D. Yakubovsky, A. Kusnetsov, A. Lihachev, A. Nashchekin, A. Serov, S. Mikushev, B. Novikov, I. Shtrom, A. Bolshakov. Nanomaterials 13, 1, 58 (2023)
- D.M. Bagnall, Y.F. Chen, Z. Zhu, T. Yao. Appl. Phys. Lett. 73, 8 (1998)
- I.Kh. Akopyan, B.V. Novikov, A.Yu. Serov, N.G. Filosofov, N.R. Grigor'eva. FTT 62, 11, 1902 (2020). (in Russian)
- I.Kh. Akopyan, B.V. Novikov, A.Yu. Serov. FTT 63, 12, 2157 (2021). (in Russian)
- C. Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, H. Kalt. Phys. Status Solidi B 6, 1424 (2010)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.