Resonance Energy Transfer in Hydrogels Based on Quantum Dots and Capture Antibodies: A Prototype Nanophotonic Immunodiagnostic System
Knysh A. A.1, Gerasimovich E. S. 1, Samokhvalov P. S. 1, Sukhanova A.V.2, Nabiev I. R.1,2
1Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia
2Laboratoire de Recherche en Nanosciences, LRN-EA, Universite de Reims Champagne-Ardenne, Reims, France
Email: knyshkikai@mail.ru, ewgenia-gerasimowitch@yandex.ru, p.samokhvalov@gmail.com, igor.nabiev@gmail.com

PDF
In recent years, a growing number of studies have investigated the structural and optical properties of hydrogels based on various nanoparticles. Due to their high porosity and compatibility with living tissues, hydrogels provide a promising basis for the development of sensitive and specific biomolecule detectors (biosensors). This study has estimated the efficiency of Forster resonance energy transfer (FRET) in hydrogel systems containing CdSe/ZnS quantum dots, diamine derivatives of polyethylene glycol (PEG) with different molecular weights, and immunoglobulin molecules labeled with the AlexaFluor 633 fluorophore. The new system is a prototype nanophotonic diagnostic tool where immunoglobulins labeled with organic fluorophores serve as "identification tags" for detecting disease biomarkers. It has been shown that FRET occurs in this prototype between hydrogel quantum dots (energy donors) and AlexaFluor 633 fluorophores (energy acceptors) with an efficiency as high as 87%. The results demonstrate that the hydrogels based on quantum dots and diamine derivatives of PEG developed here can be used for highly sensitive and specific FRET-based immunohistochemical analysis of biomarkers providing a high signal-to-background ratio. Keywords: nanocrystals, quantum dots, hydrogels, FRET, labeled molecules.
  1. A. Shamirian, A. Ghai, P. T. Snee. Sensors (Switzerland), 15 (6), 13028 (2015). DOI: 10.3390/s150613028
  2. M. Stanisavljevic, S. Krizkova, M. Vaculovicova, R. Kizek, V. Adam. Biosens. Bioelectron., 74, 562 (2015). DOI: 10.1016/j.bios.2015.06.076
  3. P. Sokolov, P. Samokhvalov, A. Sukhanova, I. Nabiev. Nanomaterials, 13 (11), 1748 (2023). DOI: 10.3390/nano13111748
  4. M. Chen, C. Grazon, P. Sensharma, T.T. Nguyen, Y. Feng, M. Chern, R.C. Baer, N. Varongchayakul, K. Cook, S. Lecommandoux, C.M. Klapperich, J.E. Galagan, A.M. Dennis, M.W. Grinstaffet. ACS Appl. Mater. Interfaces, 12 (39), 43513 (2020). DOI: 10.1021/acsami.0c13489
  5. J. Yuan, N. Gaponik, A. Eychmuller. Anal. Chem., 84 (11), 5047 (2012). DOI: 10.1021/ac300714j
  6. M. Hardzei, M. Artemyev, M. Molinari, M. Troyon, A. Sukhanova, I. Nabiev. ChemPhysChem., 13 (1), 330 (2012). DOI: 10.1002/cphc.201100552
  7. A. Sukhanova, K. Even-Desrumeaux, P. Chames, D.Baty, M. Artemyev, V. Oleinikov, I. Nabiev. Protoc. Exch., (2012). DOI: 10.1038/protex.2012.042
  8. A. Sukhanova, S. Bozrova, E. Gerasimovich, M. Baryshnikova, Z. Sokolova, P. Samokhvalov, C. Guhrenz, N. Gaponik, A. Karaulov, I. Nabiev. Nanomaterials, 12 (16), 2734 (2022). DOI: 10.3390/nano12162734
  9. J. Laverdant, W. D. de Marcillac, C. Barthou, V.D. Chinh, C. Schwob, L. Coolen, P. Benalloul, P.T. Nga, A. Maitre. Materials, 4, 1182 (2011). DOI: 10.3390/ma4071182
  10. FLS980 Series Reference Guide [Electronic source]. URL: https://www.edinst.com/wp-content/uploads/2016/02/ FLS980-Series-Reference-Guide-Integrating-Sphere.pdf
  11. F. Zhang, H. Zhong, C. Chen, X.-G. Wu, X. Hu, H. Huang, J. Han, B. Zou, Y. Dong. ACS Nano, 9 (4), 4533 (2015). DOI: 10.1021/acsnano.5b01154
  12. Y. Li, S. Natakorn, Y. Chen, M. Safar, M. Cunningham, J. Tian, D.D.-U. Li. Front. Phys., 8, 576862 (2020). DOI: 10.3389/fphy.2020.576862
  13. D. Shrestha, A. Jenei, P. Nagy, G. Vereb, J. Szollosi. Int. J. Mol. Sci., 16, 6718 (2015). DOI:10.3390/ijms16046718
  14. L. Wu, C. Huang, B.P. Emery, A.C. Sedgwick, S.D. Bull, X.-P. He, H. Tian, J. Yoon, J.L. Sessler, T.D. James. Chem. Soc. Rev., 49, 5110 (2020). DOI: 10.1039/c9cs00318e
  15. R.B. Sekar, A. Periasamy. J. Cell Biol., 160 (5), 629 (2003). DOI: 10.1083/jcb.200210140
  16. H. Sahoo. J. Photochem. Photobiol. C, 12, 20 (2011). DOI: 10.1016/j.jphotochemrev.2011.05.001
  17. W. Liu, H.S. Choi, J.P. Zimmer, E. Tanaka, J.V. Frangioni, M. Bawendi. J. Am. Chem. Soc., 129, 14530 (2007). DOI: 10.1021/ja073790m
  18. J. Liu, X. Yang, K. Wang, R. Yang, H. Ji, L. Yang, C. Wu. Chem. Commun., 47, 935 (2011). DOI: 10.1039/c0cc03993d

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru