Retranslation of Luminescence Excitation during Cascade Transitions in Hybrid Nanostructures Based on INP/INASP/INP NWs and CDSE/ZNS-TOPO QDs
Khrebtov A. I.
1, Kulagina A. S.
1, Sibirev N. V.
2, Yablonskiy A. N.
3, Ruban A.S.
4, Reznik R. R.
1,2,5,6, Cirlin G. E.
1,2,5,6, Danilov V.V.
41Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
4Emperor Alexander I St. Petersburg State Transport University, St. Petersburg, Russia
5ITMO University, St. Petersburg, Russia
6Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
Email: khrebtovart@mail.ru, a.s.panfutova@gmail.com, yablonsk@ipmras.ru, vdanilov039@gmail.com
The features of photoluminescence (PL) of hybrid nanostructures based on InP/InAsP/InP nanowires array with deposited colloidal CdSe/ZnS-trioctylphosphine oxide quantum dots at increasing pump power have been studied. Pumping was carried out by 10 ps laser pulses duration with 1 MHz repetition rate at 532 nm wavelength in the quasi-resonant region of QDs absorption. It has been established, that PL maximum of the nanostructure shifts hypsochromically with increasing of laser power, revealing a gradual dominance of the bands of its components. This PL manifestation is explained by the cascade filling of excited excitonic states, accompanied by the Auger recombination processes and light quenching. The role of free carriers absorption and energy exchange between excitonic states at high pump intensities is noted, as well as a sharp PL duration reduction associated with an increase of stimulated processes in absorption. Keywords: spectral kinetics, nanowires, colloidal quantum dots, nonradiative energy transfer, cascade filling of states.
- K. Rajeshwar, N.R. Tacconi, C.R. Chenthamarakshan. Chem. Mater., 13 (9), 2765 (2001). DOI: 10.1021/cm010254z
- J. Li, J.Z. Zhang. Coord. Chem. Rev., 253 (23-24), 3015 (2009). DOI: 10.1016/j.ccr.2009.07.017
- A.I. Khrebtov, R.R. Reznik, E.V. Ubyivovk, A.P. Litvin, I.D. Skurlov, P.S. Parfenov, A.S. Kulagina, V.V. Danilov, G.E. Cirlin. Semicond., 53 (9), 1258 (2019). DOI: 10.1134/S1063782619090082
- A.S. Kulagina, A.I. Khrebtov, R.R. Reznik, E.V. Ubyivovk, A.P. Litvin, I.D. Skurlov, G.E. Cirlin, E.N. Bodunov, V.V. Danilov. Opt. Spectr. 128 (1), 119 (2020). DOI: 10.1134/S0030400X20010129
- A.I. Khrebtov, A.S. Kulagina, V.V. Danilov, E.S. Gromova, I.D. Skurlov, A.P. Litvin, R.R. Reznik, I.V. Shtrom, G.E. Tsyrlin. FTP, 54 (9), 952 (2020) (in Russian). DOI: 10.21883/FTP.2020.09.49838.32 [A.I. Khrebtov, A.S. Kulagina, V.V. Danilov, E.S. Gromova, A.P. Litvin, I.D. Skurlov, R.R. Reznik, I.V. Shtrom, G.E. Cirlin. Semicond., 54 (9), 1141 (2020). DOI: 10.1134/S1063782620090158]
- V.V. Danilov, A.S. Panfutova, A.I. Khrebtov, S. Ambrosini, D.A. Videnichev. Opt. Lett., 37 (19), 3948 (2012). DOI: 10.1364/OL.37.003948
- S. Valligatla, K.K. Haldar, A. Patra, N.R. Desai. Opt. Laser Technol., 84, 87 (2016). DOI: 10.1016/j.optlastec.2016.05.009
- V.V. Danilov, A.I. Khrebtov, A.S. Panfutova, G.E. Cirlin, A.D. Bouravleuv, V. Dhaka, H. Lipsanen. Tech. Phys. Lett., 41 (2), 120 (2015). DOI: 10.1134/S1063785015020066
- V.I. Klimov. J. Phys. Chem. B, 104, 6112 (2000). DOI: 10.1021/jp9944132
- V.V. Vistovskyy, A.V. Zhyshkovych, O.O. Halyatkin, N.E. Mitina, A.S. Zaichenko, P.A. Rodnyi, A.S. Voloshinovskii. J. Appl. Phys., 116 (5), 054308 (2014). DOI: 10.1063/1.4892112
- V.I. Klimov. Annu. Rev. Condens. Matter Phys., 5, 285 (2014). DOI: 10.1146/annurev-conmatphys-031113-133900
- K. Kyhm, J.H. Kim, S.M. Kim, H.S. Yang. Opt. Mater., 30 (1), 158 (2006). DOI: 10.1016/j.optmat.2006.11.036
- L.A. Padilha, J.T. Stewart, R.L. Sandberg, W.K. Bae, W.K. Koh, J.M. Pietryga, V.I. Klimov. Nano Lett., 13 (3), 1092 (2013). DOI: 10.1021/nl304426y
- A.I. Khrebtov, A.S. Kulagina, V.V. Danilov, A.S. Dragunova, K.P. Kotlyar, R.R. Reznik, G.E. Cirlin. J. Opt. Tech., 89 (5), 298 (2022). DOI: 10.1364/JOT.89.000298
- R.R. Reznik, G.E. Cirlin, I.V. Shtrom, A.I. Khrebtov, I.P. Soshnikov, N.V. Kryzhanovskaya, E.I. Moiseev, A.E. Zhukov. Tech. Phys. Lett., 44 (3), 112 (2018). DOI: 10.1134/S1063785018020116
- A.I. Khrebtov, V.V. Danilov, A.S. Kulagina, R.R. Reznik, A.P. Litvin, I.D. Skurlov, F.M. Safin, V.O. Gridchin, D.S. Shevchuk, S.V. Shmakov. Nanomat., 11 (3), 640 (2021). DOI: 10.3390/nano11030640
- K. Ikejiri, Yu. Kitauchi, K. Tomioka, J. Motohisa, T. Fukui. Nano Lett., 11, 4314 (2011). DOI: 10.1021/nl202365q
- V.V. Danilov, A.S. Kulagina, N.V. Sibirev. Appl. Opt., 57 (28), 8166 (2018). DOI: 10.1364/AO.57.008166
- L. Franz, T. Klar, T.A. Schietinger, S. Rogach, J. Feldmann. Nano Letters., 4 (9), 1599 (2004). DOI: 10.1021/nl049322h
- A.D. Golinskaya, A.M. Smirnov, M.V. Kozlova, E.V. Zharkova, R.B. Vasiliev, V.N. Mantsevich, V.S. Dneprovskii. Results Phys., 27, 104488 (2021). DOI: 10.1016/j.rinp.2021.104488
- A.M. Smirnov, A.D. Golinskaya, B.M. Saidzhonov, V.N. Mantsevich, V.S. Dneprovskii, R.B. Vasiliev. J. Lumin., 229, 11768245 (2021). DOI: 10.1016/j.jlumin.2020.117682
- D.J. Trivedi, L. Wang, O.V. Prezhdo. Nano Lett., 15 (3), 2086 (2015). DOI: 10.1021/nl504982k
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.