Retranslation of Luminescence Excitation during Cascade Transitions in Hybrid Nanostructures Based on INP/INASP/INP NWs and CDSE/ZNS-TOPO QDs
Khrebtov A. I. 1, Kulagina A. S. 1, Sibirev N. V.2, Yablonskiy A. N. 3, Ruban A.S.4, Reznik R. R.1,2,5,6, Cirlin G. E.1,2,5,6, Danilov V.V. 4
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
4Emperor Alexander I St. Petersburg State Transport University, St. Petersburg, Russia
5ITMO University, St. Petersburg, Russia
6Institute for Analytical Instrumentation of the Russian Academy of Sciences, Saint Petersburg, Russia
Email: khrebtovart@mail.ru, a.s.panfutova@gmail.com, yablonsk@ipmras.ru, vdanilov039@gmail.com

PDF
The features of photoluminescence (PL) of hybrid nanostructures based on InP/InAsP/InP nanowires array with deposited colloidal CdSe/ZnS-trioctylphosphine oxide quantum dots at increasing pump power have been studied. Pumping was carried out by 10 ps laser pulses duration with 1 MHz repetition rate at 532 nm wavelength in the quasi-resonant region of QDs absorption. It has been established, that PL maximum of the nanostructure shifts hypsochromically with increasing of laser power, revealing a gradual dominance of the bands of its components. This PL manifestation is explained by the cascade filling of excited excitonic states, accompanied by the Auger recombination processes and light quenching. The role of free carriers absorption and energy exchange between excitonic states at high pump intensities is noted, as well as a sharp PL duration reduction associated with an increase of stimulated processes in absorption. Keywords: spectral kinetics, nanowires, colloidal quantum dots, nonradiative energy transfer, cascade filling of states.
  1. K. Rajeshwar, N.R. Tacconi, C.R. Chenthamarakshan. Chem. Mater., 13 (9), 2765 (2001). DOI: 10.1021/cm010254z
  2. J. Li, J.Z. Zhang. Coord. Chem. Rev., 253 (23-24), 3015 (2009). DOI: 10.1016/j.ccr.2009.07.017
  3. A.I. Khrebtov, R.R. Reznik, E.V. Ubyivovk, A.P. Litvin, I.D. Skurlov, P.S. Parfenov, A.S. Kulagina, V.V. Danilov, G.E. Cirlin. Semicond., 53 (9), 1258 (2019). DOI: 10.1134/S1063782619090082
  4. A.S. Kulagina, A.I. Khrebtov, R.R. Reznik, E.V. Ubyivovk, A.P. Litvin, I.D. Skurlov, G.E. Cirlin, E.N. Bodunov, V.V. Danilov. Opt. Spectr. 128 (1), 119 (2020). DOI: 10.1134/S0030400X20010129
  5. A.I. Khrebtov, A.S. Kulagina, V.V. Danilov, E.S. Gromova, I.D. Skurlov, A.P. Litvin, R.R. Reznik, I.V. Shtrom, G.E. Tsyrlin. FTP, 54 (9), 952 (2020) (in Russian). DOI: 10.21883/FTP.2020.09.49838.32 [A.I. Khrebtov, A.S. Kulagina, V.V. Danilov, E.S. Gromova, A.P. Litvin, I.D. Skurlov, R.R. Reznik, I.V. Shtrom, G.E. Cirlin. Semicond., 54 (9), 1141 (2020). DOI: 10.1134/S1063782620090158]
  6. V.V. Danilov, A.S. Panfutova, A.I. Khrebtov, S. Ambrosini, D.A. Videnichev. Opt. Lett., 37 (19), 3948 (2012). DOI: 10.1364/OL.37.003948
  7. S. Valligatla, K.K. Haldar, A. Patra, N.R. Desai. Opt. Laser Technol., 84, 87 (2016). DOI: 10.1016/j.optlastec.2016.05.009
  8. V.V. Danilov, A.I. Khrebtov, A.S. Panfutova, G.E. Cirlin, A.D. Bouravleuv, V. Dhaka, H. Lipsanen. Tech. Phys. Lett., 41 (2), 120 (2015). DOI: 10.1134/S1063785015020066
  9. V.I. Klimov. J. Phys. Chem. B, 104, 6112 (2000). DOI: 10.1021/jp9944132
  10. V.V. Vistovskyy, A.V. Zhyshkovych, O.O. Halyatkin, N.E. Mitina, A.S. Zaichenko, P.A. Rodnyi, A.S. Voloshinovskii. J. Appl. Phys., 116 (5), 054308 (2014). DOI: 10.1063/1.4892112
  11. V.I. Klimov. Annu. Rev. Condens. Matter Phys., 5, 285 (2014). DOI: 10.1146/annurev-conmatphys-031113-133900
  12. K. Kyhm, J.H. Kim, S.M. Kim, H.S. Yang. Opt. Mater., 30 (1), 158 (2006). DOI: 10.1016/j.optmat.2006.11.036
  13. L.A. Padilha, J.T. Stewart, R.L. Sandberg, W.K. Bae, W.K. Koh, J.M. Pietryga, V.I. Klimov. Nano Lett., 13 (3), 1092 (2013). DOI: 10.1021/nl304426y
  14. A.I. Khrebtov, A.S. Kulagina, V.V. Danilov, A.S. Dragunova, K.P. Kotlyar, R.R. Reznik, G.E. Cirlin. J. Opt. Tech., 89 (5), 298 (2022). DOI: 10.1364/JOT.89.000298
  15. R.R. Reznik, G.E. Cirlin, I.V. Shtrom, A.I. Khrebtov, I.P. Soshnikov, N.V. Kryzhanovskaya, E.I. Moiseev, A.E. Zhukov. Tech. Phys. Lett., 44 (3), 112 (2018). DOI: 10.1134/S1063785018020116
  16. A.I. Khrebtov, V.V. Danilov, A.S. Kulagina, R.R. Reznik, A.P. Litvin, I.D. Skurlov, F.M. Safin, V.O. Gridchin, D.S. Shevchuk, S.V. Shmakov. Nanomat., 11 (3), 640 (2021). DOI: 10.3390/nano11030640
  17. K. Ikejiri, Yu. Kitauchi, K. Tomioka, J. Motohisa, T. Fukui. Nano Lett., 11, 4314 (2011). DOI: 10.1021/nl202365q
  18. V.V. Danilov, A.S. Kulagina, N.V. Sibirev. Appl. Opt., 57 (28), 8166 (2018). DOI: 10.1364/AO.57.008166
  19. L. Franz, T. Klar, T.A. Schietinger, S. Rogach, J. Feldmann. Nano Letters., 4 (9), 1599 (2004). DOI: 10.1021/nl049322h
  20. A.D. Golinskaya, A.M. Smirnov, M.V. Kozlova, E.V. Zharkova, R.B. Vasiliev, V.N. Mantsevich, V.S. Dneprovskii. Results Phys., 27, 104488 (2021). DOI: 10.1016/j.rinp.2021.104488
  21. A.M. Smirnov, A.D. Golinskaya, B.M. Saidzhonov, V.N. Mantsevich, V.S. Dneprovskii, R.B. Vasiliev. J. Lumin., 229, 11768245 (2021). DOI: 10.1016/j.jlumin.2020.117682
  22. D.J. Trivedi, L. Wang, O.V. Prezhdo. Nano Lett., 15 (3), 2086 (2015). DOI: 10.1021/nl504982k

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru