First principle studies of the optical spectra of A2Ca2(CO3)3 (A: Na, K) double carbonates under pressure
Zhuravlev Yu. N. 1
1Kemerovo State University, Kemerovo, Russia
Email: zhur@kemsu.ru

PDF
Density functional theory methods with the B3LYP hybrid functional and the basis of a linear combination of localized atomic orbitals of the CRYSTAL17 program code were used to study the pressure dependences of the structural and optical properties of double carbonates Na2Ca2(CO3)3, K2Ca2(CO3)3. The parameters of the Birch-Murnaghan equation of state and linear compressibility moduli are determined. The coefficients of generation of the second harmonic, which characterize the nonlinear optical properties of these materials, are determined, and the frequencies and intensities of normal long-wavelength oscillations are calculated, from which the spectra of infrared absorption and Raman scattering of light are plotted by Gaussian expansion. The LO-TO splittings were estimated and the reflection spectra were plotted. It is shown that in the lattice region the spectra differ in the number and intensities of modes, while in the region of intramolecular vibrations of CO32- atoms for both compounds they have a qualitatively similar form. For lattice and intramolecular vibrations, with increasing pressure, the rates of increase in wave numbers differ for each type of vibration. For oscillations of the ν4, ν1, ν3 types, the Gruneisen mode parameter is usually equal to 0.2-0.4. For out-of-plane deformations ν2, it is negative in Na2Ca2(CO3)3 and close to zero in K2Ca2(CO3)3. Keywords: ab initio, carbonates, infrared absorption, Raman scattering, pressure, Gruneisen parameter.
  1. Y. Song, M. Luo, D. Zhao, G. Peng, C. Lin, N. Ye. J. Materials Chemistry C, 5 (34), 8758 (2017). DOI: 10.1039/C7TC02789C
  2. A.V. Arefiev, A. Shatskiy, I.V. Podborodnikov, S.V. Rashchenko, A.D. Chanyshev, K.D. Litasov. Phys. and Chem. Minerals, 46, 229 (2019). DOI: 10.1007/s00269-018-1000-z
  3. I.V. Podborodnikov, A. Shatskiy, A.V. Arefiev, S.V. Rashchenko, A.D. Chanyshev, K.D. Litasov. Phys. and Chem. Minerals, 45, 773 (2018). DOI: 10.1007/s00269-018-0961-2
  4. Y. Liu, Y. Shen, S. Zhao, J. Luo. Coord. Chem. Rev., 407, 213152 (2020). DOI: 10.1016/j.ccr.2019.213152
  5. C.E. Vennari, C.M. Beavers, Q. Williams. J. Geophys. Research: Solid Earth, 123 (8), 6574 (2018). DOI: 10.1029/2018JB015846
  6. A.V. Golovin, I.S. Sharygin, A.V. Korsakov, V.S. Kamenetsky, A. Abersteiner. J. Raman Spectrosc., 51 (9), 1849 (2020). DOI: 10.1002/jrs.5701
  7. M. Fastelli, A. Zucchini, P. Comodi, A. Maturilli, G. Alemanno, E. Palomba, R. Piergallini. Minerals, 11, 845 (2021). DOI: 10.3390/min11080845
  8. W.V. Boynton, D.W. Ming, S.P. Kounaves, S.M.M. Young, R.E. Arvidson, M.H. Hecht, J. Hoffman, P.B. Niles, D.K. Hamara, R.C. Quinn, P.H. Smith, D.C. Catling, R.V. Morris. Science, 325, 61 (2009). DOI: 10.1126/science.1172768
  9. A.V. Golovin, I.S. Sharygin, A.V. Korsakov. Chem. Geology, 455 (20), 357 (2017). DOI: 10.1016/j.chemgeo.2016.10.036
  10. A.J. Elliot, D.M. Jenkins, T.K. Lowenstein, A.R. Carroll. Geochim. Cosmochim. Acta, 115 (15), 31 (2013). DOI: 10.1016/j.gca.2013.04.005
  11. B. Dickens, A. Hyman, W.E. Brown. J. Research of the National Bureau of Standards A: Phys. and Chem., 75A (2), 129 (1971). DOI: 10.6028/jres.075A.013
  12. D.S. Robertson, N. Shaw, I.M. Young. J. Mater. Sci., 14, 230 (1979). DOI: 10.1007/BF01028348
  13. A.V. Arefiev, A. Shatskiy, I.V. Podborodnikov, A. Bekhtenova, K.D. Litasov. Minerals, 9 (5), 296 (2019). DOI: 10.3390/min9050296
  14. V. Arefiev, I.V. Podborodnikov, A.F. Shatskiy, K.D. Litasov. Geochem. International, 57 (9), 981 (2019). DOI: 10.1134/S0016702919090039
  15. A. Navrotsky, R.L. Putnam, C. Winbo, E. Rose'n. American Mineralogist, 82 (5-6), 546 (1997). DOI: 10.2138/am-1997-5-614
  16. C. Winbo, E. Rosen, M. Heim. Acta Chem. Scand., 52, 431 (1998). DOI: 10.3891/acta.chem.scand.52-0431
  17. C. Winbo, D. Bostroem, M. Goebbels. Acta Chem. Scand., 51 (3), 387 (1997). DOI: 10.3891/ACTA.CHEM.SCAND.51-0387
  18. I.V. Podborodnikov, A. Shatskiy, A.V. Arefiev, K.D. Litasov. Lithos, 330-331, 74 (2019). DOI: 10.1016/j.lithos.2019.01.035
  19. U. Borodina, A. Likhacheva, A. Golovin, S. Goryainov, S. Rashchenko, A. Korsakov. High Pressure Research, 38 (3), 293 (2018). DOI: 10.1080/08957959.2018.1488973
  20. Q.C. Williams, C. Vennari, E.F. III O'Bannon. Am. Geophys. Union, Fall Meeting abstract id. MR13B-2703 (2015)
  21. L. Ray, F. Marilla, J. Dickfos. Spectrochim. Acta, Part A: Molec. and Biomolec. Spectrosc., 71 (1), 143 (2008). DOI: 10.1016/j.saa.2007.11.021
  22. S.V. Goryainov, S.N. Krylova, U.O. Borodina, A.S. Krylov. J. Phys. Chem. C, 125 (33), 18501 (2021). DOI: 10.1021/acs.jpcc.1c05077
  23. T. Inerbaev, P. Gavryushkin, K. Litasov, F. Abuova, A. Akilbekov. Bulletin of the Karaganda University: Phys. Ser., 4 (88), 24 (2017). DOI: 10.31489/2017Phys4/24-34
  24. R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput. Mol. Sci., 8 (4), e1360 (2018). DOI: 10.1002/wcms.1360
  25. A.D. Becke. J. Chem. Phys., 98, 5648 (1993). DOI: 10.1063/1.464913
  26. C. Lee, W. Yang, R.G. Parr. Phys. Rev. B, 37, 785 (1988). DOI: 10.1103/PhysRevB.37.785
  27. L. Valenzano, F.J. Torres, K. Doll, F. Pascale, C.M. Zicovich-Wilson, R. Dovesi. Z. Phys. Chem., 220, 893 (2006). DOI: 10.1524/zpch.2006.220.7.893
  28. R. Dovesi, C. Roetti, C. Freyria Fava, M. Prencipe, V.R. Saunders. Chem. Phys., 156 (1), 11 (1991). DOI: 10.1016/0301-0104(91)87032-Q
  29. R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I.J. Bush, P. D'Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassa. CRYSTAL17 user'smanual (2018). URL: https://www.crystal.unito.it/index.html
  30. H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
  31. F. Pascale, C.M. Zicovich-Wilson, F. Lopez, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem., 25, 888 (2004). DOI: 10.1002/jcc.20019
  32. C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders, R. Orlando, R. Dovesi. J. Comput. Chem., 25, 1873 (2004). DOI: 10.1002/jcc.20120
  33. L. Maschio, B. Kirtman, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys., 139, 164101 (2013). DOI: 10.1063/1.4824442
  34. M. Ferrero, M. Rerat, R. Orlando, R. Dovesi. J. Comp. Chem., 29 (9), 1450 (2008). DOI: 10.1002/jcc.20905
  35. M. Ferrero, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys., 128, 014110 (2008). DOI: 10.1063/1.2817596
  36. M. Ferrero, M. Rerat, R. Orlando, R. Dovesi, I.J. Bush. J. Phys.: Conf. Ser., 117, 12016 (2008). DOI: 10.1088/1742-6596/117/1/012016
  37. R. Orlando, V. Lacivita, R. Bast, K. Ruud. J. Chem. Phys., 132, 244106 (2010). DOI: 10.1063/1.3447387
  38. M. Ferrero, M. Rerat, B. Kirtman, R. Dovesi. J. Chem. Phys., 129 (24), 244110 (2008). DOI: 10.1063/1.3043366
  39. M. Ferrero, B. Civalleri, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys., 131 (21), 214704 (2009). DOI: 10.1063/1.3267861
  40. R.A. Kumar. J. Chem., 2013, 154862 (2013). DOI: 10.1155/2013/154862
  41. C. Carteret, M. De La Pierre, M. Dossot, F. Pascale, A. Erba, R. Dovesi. J. Chem. Phys., 138, 014201 (2013). DOI: 10.1063/1.4772960
  42. A. Grzechnik, P. Simon, P. Gillet, P. McMillan. Physica B: Condens Matter, 262 (1-2), 67 (1999). DOI: 10.1016/S0921-4526(98)00437-2
  43. F. Birch. J. Geophys. Research, 83 (B3), 1257 (1978). DOI: 10.1029/JB083iB03p01257
  44. C. Wu, G. Yang, M.G. Humphrey, C. Zhang. Coord. Chem. Rev., 375 (15), 459 (2018). DOI: 10.1016/j.ccr.2018.02.017
  45. X. Liu, P. Gong, Y. Yang, G. Song, Z. Lin. Coord. Chem. Rev., 400, 213045 (2019). DOI: 10.1016/j.ccr.2019.213045
  46. Y. Liu, Y. Shen, S. Zhao, J. Luo. Coord. Chem. Rev., 407, 213152 (2020). DOI: 10.1016/j.ccr.2019.213152
  47. Q. Jing, G. Yang, J. Hou, M. Sun, H. Cao. J. Solid State Chem., 244, 69 (2016). DOI: 10.1016/j.jssc.2016.08.036
  48. R. Li. Crystals, 7 (2), 50 (2017). DOI: 10.3390/cryst7020050
  49. S.K. Kurtz, T.T. Perry. J. Appl. Phys., 39 (8), 3798 (1968). DOI: 10.1063/1.1656857
  50. Yu.N. Zhuravlev, V.V. Atuchin. Nanomaterials, 10 (11), 2275 (2020). DOI: 10.3390/nano10112275
  51. Y.N. Zhuravlev, V.V. Atuchin. Sensors, 21, 3644 (2021). DOI: 10.3390/s21113644
  52. H.H. Adler, P.F. Kerr. Am. Mineralogist, 48, 839 (1963)
  53. Y.N. Zhuravlev. Geochem. International, 60 (11), 1103 (2022). DOI: 10.1134/S0016702922110118
  54. A. Arefiev, A. Shatskiy, A. Bekhtenova, K. Litasov. J. Raman Spectrosc., 53 (12), 2110 (2022). DOI: 10.1002/jrs.6438

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru