Density functional theory methods with the B3LYP hybrid functional and the basis of a linear combination of localized atomic orbitals of the CRYSTAL17 program code were used to study the pressure dependences of the structural and optical properties of double carbonates Na2Ca2(CO3)3, K2Ca2(CO3)3. The parameters of the Birch-Murnaghan equation of state and linear compressibility moduli are determined. The coefficients of generation of the second harmonic, which characterize the nonlinear optical properties of these materials, are determined, and the frequencies and intensities of normal long-wavelength oscillations are calculated, from which the spectra of infrared absorption and Raman scattering of light are plotted by Gaussian expansion. The LO-TO splittings were estimated and the reflection spectra were plotted. It is shown that in the lattice region the spectra differ in the number and intensities of modes, while in the region of intramolecular vibrations of CO32- atoms for both compounds they have a qualitatively similar form. For lattice and intramolecular vibrations, with increasing pressure, the rates of increase in wave numbers differ for each type of vibration. For oscillations of the ν4, ν1, ν3 types, the Gruneisen mode parameter is usually equal to 0.2-0.4. For out-of-plane deformations ν2, it is negative in Na2Ca2(CO3)3 and close to zero in K2Ca2(CO3)3. Keywords: ab initio, carbonates, infrared absorption, Raman scattering, pressure, Gruneisen parameter.
- Y. Song, M. Luo, D. Zhao, G. Peng, C. Lin, N. Ye. J. Materials Chemistry C, 5 (34), 8758 (2017). DOI: 10.1039/C7TC02789C
- A.V. Arefiev, A. Shatskiy, I.V. Podborodnikov, S.V. Rashchenko, A.D. Chanyshev, K.D. Litasov. Phys. and Chem. Minerals, 46, 229 (2019). DOI: 10.1007/s00269-018-1000-z
- I.V. Podborodnikov, A. Shatskiy, A.V. Arefiev, S.V. Rashchenko, A.D. Chanyshev, K.D. Litasov. Phys. and Chem. Minerals, 45, 773 (2018). DOI: 10.1007/s00269-018-0961-2
- Y. Liu, Y. Shen, S. Zhao, J. Luo. Coord. Chem. Rev., 407, 213152 (2020). DOI: 10.1016/j.ccr.2019.213152
- C.E. Vennari, C.M. Beavers, Q. Williams. J. Geophys. Research: Solid Earth, 123 (8), 6574 (2018). DOI: 10.1029/2018JB015846
- A.V. Golovin, I.S. Sharygin, A.V. Korsakov, V.S. Kamenetsky, A. Abersteiner. J. Raman Spectrosc., 51 (9), 1849 (2020). DOI: 10.1002/jrs.5701
- M. Fastelli, A. Zucchini, P. Comodi, A. Maturilli, G. Alemanno, E. Palomba, R. Piergallini. Minerals, 11, 845 (2021). DOI: 10.3390/min11080845
- W.V. Boynton, D.W. Ming, S.P. Kounaves, S.M.M. Young, R.E. Arvidson, M.H. Hecht, J. Hoffman, P.B. Niles, D.K. Hamara, R.C. Quinn, P.H. Smith, D.C. Catling, R.V. Morris. Science, 325, 61 (2009). DOI: 10.1126/science.1172768
- A.V. Golovin, I.S. Sharygin, A.V. Korsakov. Chem. Geology, 455 (20), 357 (2017). DOI: 10.1016/j.chemgeo.2016.10.036
- A.J. Elliot, D.M. Jenkins, T.K. Lowenstein, A.R. Carroll. Geochim. Cosmochim. Acta, 115 (15), 31 (2013). DOI: 10.1016/j.gca.2013.04.005
- B. Dickens, A. Hyman, W.E. Brown. J. Research of the National Bureau of Standards A: Phys. and Chem., 75A (2), 129 (1971). DOI: 10.6028/jres.075A.013
- D.S. Robertson, N. Shaw, I.M. Young. J. Mater. Sci., 14, 230 (1979). DOI: 10.1007/BF01028348
- A.V. Arefiev, A. Shatskiy, I.V. Podborodnikov, A. Bekhtenova, K.D. Litasov. Minerals, 9 (5), 296 (2019). DOI: 10.3390/min9050296
- V. Arefiev, I.V. Podborodnikov, A.F. Shatskiy, K.D. Litasov. Geochem. International, 57 (9), 981 (2019). DOI: 10.1134/S0016702919090039
- A. Navrotsky, R.L. Putnam, C. Winbo, E. Rose'n. American Mineralogist, 82 (5-6), 546 (1997). DOI: 10.2138/am-1997-5-614
- C. Winbo, E. Rosen, M. Heim. Acta Chem. Scand., 52, 431 (1998). DOI: 10.3891/acta.chem.scand.52-0431
- C. Winbo, D. Bostroem, M. Goebbels. Acta Chem. Scand., 51 (3), 387 (1997). DOI: 10.3891/ACTA.CHEM.SCAND.51-0387
- I.V. Podborodnikov, A. Shatskiy, A.V. Arefiev, K.D. Litasov. Lithos, 330-331, 74 (2019). DOI: 10.1016/j.lithos.2019.01.035
- U. Borodina, A. Likhacheva, A. Golovin, S. Goryainov, S. Rashchenko, A. Korsakov. High Pressure Research, 38 (3), 293 (2018). DOI: 10.1080/08957959.2018.1488973
- Q.C. Williams, C. Vennari, E.F. III O'Bannon. Am. Geophys. Union, Fall Meeting abstract id. MR13B-2703 (2015)
- L. Ray, F. Marilla, J. Dickfos. Spectrochim. Acta, Part A: Molec. and Biomolec. Spectrosc., 71 (1), 143 (2008). DOI: 10.1016/j.saa.2007.11.021
- S.V. Goryainov, S.N. Krylova, U.O. Borodina, A.S. Krylov. J. Phys. Chem. C, 125 (33), 18501 (2021). DOI: 10.1021/acs.jpcc.1c05077
- T. Inerbaev, P. Gavryushkin, K. Litasov, F. Abuova, A. Akilbekov. Bulletin of the Karaganda University: Phys. Ser., 4 (88), 24 (2017). DOI: 10.31489/2017Phys4/24-34
- R. Dovesi, A. Erba, R. Orlando, C.M. Zicovich-Wilson, B. Civalleri, L. Maschio, M. Rerat, S. Casassa, J. Baima, S. Salustro, B. Kirtman. WIREs Comput. Mol. Sci., 8 (4), e1360 (2018). DOI: 10.1002/wcms.1360
- A.D. Becke. J. Chem. Phys., 98, 5648 (1993). DOI: 10.1063/1.464913
- C. Lee, W. Yang, R.G. Parr. Phys. Rev. B, 37, 785 (1988). DOI: 10.1103/PhysRevB.37.785
- L. Valenzano, F.J. Torres, K. Doll, F. Pascale, C.M. Zicovich-Wilson, R. Dovesi. Z. Phys. Chem., 220, 893 (2006). DOI: 10.1524/zpch.2006.220.7.893
- R. Dovesi, C. Roetti, C. Freyria Fava, M. Prencipe, V.R. Saunders. Chem. Phys., 156 (1), 11 (1991). DOI: 10.1016/0301-0104(91)87032-Q
- R. Dovesi, V. R. Saunders, C. Roetti, R. Orlando, C.M. Zicovich-Wilson, F. Pascale, B. Civalleri, K. Doll, N. M. Harrison, I.J. Bush, P. D'Arco, M. Llunel, M. Causa, Y. Noel, L. Maschio, A. Erba, M. Rerat, S. Casassa. CRYSTAL17 user'smanual (2018). URL: https://www.crystal.unito.it/index.html
- H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
- F. Pascale, C.M. Zicovich-Wilson, F. Lopez, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem., 25, 888 (2004). DOI: 10.1002/jcc.20019
- C.M. Zicovich-Wilson, F. Pascale, C. Roetti, V.R. Saunders, R. Orlando, R. Dovesi. J. Comput. Chem., 25, 1873 (2004). DOI: 10.1002/jcc.20120
- L. Maschio, B. Kirtman, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys., 139, 164101 (2013). DOI: 10.1063/1.4824442
- M. Ferrero, M. Rerat, R. Orlando, R. Dovesi. J. Comp. Chem., 29 (9), 1450 (2008). DOI: 10.1002/jcc.20905
- M. Ferrero, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys., 128, 014110 (2008). DOI: 10.1063/1.2817596
- M. Ferrero, M. Rerat, R. Orlando, R. Dovesi, I.J. Bush. J. Phys.: Conf. Ser., 117, 12016 (2008). DOI: 10.1088/1742-6596/117/1/012016
- R. Orlando, V. Lacivita, R. Bast, K. Ruud. J. Chem. Phys., 132, 244106 (2010). DOI: 10.1063/1.3447387
- M. Ferrero, M. Rerat, B. Kirtman, R. Dovesi. J. Chem. Phys., 129 (24), 244110 (2008). DOI: 10.1063/1.3043366
- M. Ferrero, B. Civalleri, M. Rerat, R. Orlando, R. Dovesi. J. Chem. Phys., 131 (21), 214704 (2009). DOI: 10.1063/1.3267861
- R.A. Kumar. J. Chem., 2013, 154862 (2013). DOI: 10.1155/2013/154862
- C. Carteret, M. De La Pierre, M. Dossot, F. Pascale, A. Erba, R. Dovesi. J. Chem. Phys., 138, 014201 (2013). DOI: 10.1063/1.4772960
- A. Grzechnik, P. Simon, P. Gillet, P. McMillan. Physica B: Condens Matter, 262 (1-2), 67 (1999). DOI: 10.1016/S0921-4526(98)00437-2
- F. Birch. J. Geophys. Research, 83 (B3), 1257 (1978). DOI: 10.1029/JB083iB03p01257
- C. Wu, G. Yang, M.G. Humphrey, C. Zhang. Coord. Chem. Rev., 375 (15), 459 (2018). DOI: 10.1016/j.ccr.2018.02.017
- X. Liu, P. Gong, Y. Yang, G. Song, Z. Lin. Coord. Chem. Rev., 400, 213045 (2019). DOI: 10.1016/j.ccr.2019.213045
- Y. Liu, Y. Shen, S. Zhao, J. Luo. Coord. Chem. Rev., 407, 213152 (2020). DOI: 10.1016/j.ccr.2019.213152
- Q. Jing, G. Yang, J. Hou, M. Sun, H. Cao. J. Solid State Chem., 244, 69 (2016). DOI: 10.1016/j.jssc.2016.08.036
- R. Li. Crystals, 7 (2), 50 (2017). DOI: 10.3390/cryst7020050
- S.K. Kurtz, T.T. Perry. J. Appl. Phys., 39 (8), 3798 (1968). DOI: 10.1063/1.1656857
- Yu.N. Zhuravlev, V.V. Atuchin. Nanomaterials, 10 (11), 2275 (2020). DOI: 10.3390/nano10112275
- Y.N. Zhuravlev, V.V. Atuchin. Sensors, 21, 3644 (2021). DOI: 10.3390/s21113644
- H.H. Adler, P.F. Kerr. Am. Mineralogist, 48, 839 (1963)
- Y.N. Zhuravlev. Geochem. International, 60 (11), 1103 (2022). DOI: 10.1134/S0016702922110118
- A. Arefiev, A. Shatskiy, A. Bekhtenova, K. Litasov. J. Raman Spectrosc., 53 (12), 2110 (2022). DOI: 10.1002/jrs.6438
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.