Phonons and features due to ionic conductivity in the reflection spectra of BiF3 crystal
Molchanova A. D. 1, Klimin S.A. 1, Chernyshev V.A. 2, Boldyrev K. N. 1, Valiev A. R.1,3, Karimov D. N. 4
1Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
2Ural Federal University after the first President of Russia B.N. Yeltsin, Yekaterinburg, Russia
3National Research University Higher School of Economics, Moscow, Russia
4Shubnikov Institute of Crystallography “Crystallography and Photonics”, Russian Academy of Sciences, Moscow, Russia
Email: nastyamolchanova@list.ru, klimin@isan.troitsk.ru, vladimir.chernyshev@urfu.ru, kn.boldyrev@gmail.com, dnkarimov@gmail.com

PDF
Crystals of bismuth fluoride BiF3 grown from a melt were studied for the first time by optical spectroscopy methods and calculated from first principles in the phonon excitations region. A study of IR reflectance spectra in polarized light was carried out. The parameters of optical phonons were obtained. In the IR reflectance spectra, a low-frequency rise in the range <500 cm-1, characteristic of conductive materials, is observed. The reflection spectra were analyzed within the framework of the Drude-Lorentz model, taking into account the contribution of ionic conductivity. An ab initio calculation of the phonon spectrum of a BiF3 crystal was carried out and the relationship between theoretical and experimental data was analyzed. Keywords: IR spectroscopy, BiF3, ab initio calculation of phonon modes, ionic conductivity.
  1. J.C. Kimball. Solid State Commun., 32 (11), 1025 (1979). DOI: 10.1016/0038-1098(79)90821-4
  2. T. Awano. Phys. Technol., 51 (5), 458 (2008). DOI: 10.1016/j.infrared.2007.12.018
  3. A.A. Volkov, Yu.G. Goncharov, G.V. Kozlov, G.I. Mirzoyants, A.M. Prokhorov. Dokl. Akad. Nauk SSSR, 284 (4), 846 (1986) (in Russian)
  4. T. Awano, T. Nanba, M. Ikezawa. Solid State Ion., 53--56, 1269 (1992). DOI: 10.1016/0167-2738(92)90324-i
  5. D.N. Karimov, N.I. Sorokin. Crystallogr. Rep., 68 (2), 297 (2023). DOI: 10.1134/S1063774523020189
  6. J.F. Baumgartner, F. Krumeich, M. Worle, K.V. Kravchyk, M.V. Kovalenko. Commun. Chem., 5 (1), 6 (2022). DOI: 10.1038/s42004-021-00622-y
  7. M.F. Oszajca, K.V. Kravchyk, M. Walter, F. Krieg, M.I. Bodnarchuk, M.V. Kovalenko. Nanoscale, 7 (40), 16601 (2015). DOI: 10.1039/c5nr04488j
  8. M. Bervas, F. Badway, L.C. Klein, G.G. Amatucci. Electrochem. Solid-State Lett., 8 (4), A179 (2005). DOI: 10.1149/1.1861040
  9. M. Bervas, A.N. Mansour, W.-S. Yoon, J.F. Al-Sharab, F. Badway, F. Cosandey, L.C. Klein, G.G. Amatucci. J. Electrochem. Soc., 153 (4), A799 (2006). DOI: 10.1149/1.2167951
  10. V.K. Davis, C.M. Bates, K. Omichi, B.M. Savoie, N. Momv cilovic, Q. Xu, W.J. Wolf, M.A. Webb, K.J. Billings, N.H. Chou, S. Alayoglu, R.K. McKenney, I.M. Darolles, N.G. Nair, A. Hightower, D. Rosenberg, M. Ahmed, C.J. Brooks, T.F. Miller, R.H. Grubbs, S.C. Jones. Science, 362 (6419), 1144 (2018). DOI: 10.1126/science.aat7070
  11. M. Anji Reddy, M. Fichtner. J. Mater. Chem., 21 (43), 17059 (2011). DOI: 10.1039/c1jm13535j
  12. C. Rongeat, M.A. Reddy, T. Diemant, R.J. Behm, M. Fichtner. J. Mater. Chem. A, 2 (48), 20861 (2014). DOI: 10.1039/C4TA02840F
  13. M.A. Nowroozi, I. Mohammad, P. Molaiyan, K. Wissel, A.R. Munnangi, O. Clemens. J. Mater. Chem., 9 (10), 5980 (2021). DOI: 10.1039/d0ta11656d
  14. E.B. Merkulov, A.A. Udovenko, A.B. Slobodyuk. J. Solid State Chem., 314, 123421 (2022). DOI: 10.1016/j.jssc.2022.123421
  15. A.B. Kuzmenko. Rev. Sci. Instrum., 76 (8), 083108 (2005). DOI: 10.1063/1.1979470
  16. R. Dovesi. CRYSTAL17 User's Manual. [Electronic source]. https://www.crystal.unito.it/Manuals/crystal17.pdf
  17. CRYSTAL17 a computational tool for solid state chemistry and physics. [Electronic source]. http://www.crystal.unito.it/index.php
  18. M.F. Peintinger, D.V. Oliveira, T. Bredow. J. Comput. Chem., 34 (6), 451 (2013). DOI: 10.1002/jcc.23153
  19. E. Heifets, E.A. Kotomin, A.A. Bagaturyants, J. Maier. Phys. Chem. Chem. Phys., 19 (5), 3738 (2017). DOI: 10.1039/c6cp07986e
  20. Von O. Greis, M. Martinez-Ripoll, Z. Anorg. Allg. Chem., 436 (1), 105 (1977). DOI: 10.1002/zaac.19774360112
  21. A.K. Cheetham, N. Norman. Acta Chem. Scand., 28a, 55 (1974). DOI: 10.3891/acta.chem.scand.28a-0055
  22. M. Kawasaki, H. Kiuchi, K. Shimoda, G. Kano, H. Fujimoto, Z. Ogumi, T. Abe. J. Electrochem. Soc., 167 (12), 120518 (2020). DOI: 10.1149/1945-7111/abad6d
  23. A.V. Novoselova. Zh. Neorg. Khim., 26, 1727 (1981) (in Russian)
  24. D.L. Rousseau, R.P. Bauman, S.P.S. Porto. J. Raman Spectrosc., 10 (1), 253 (1981). DOI: 10.1002/jrs.1250100152
  25. K. Funke, A. Jost. Berichte Bunsenges. Fur Phys. Chem., 75 (5), 436 (1971). DOI: 10.1002/bbpc.19710750508
  26. G.L. Bottger, A.L. Geddes. J. Chem. Phys., 46 (8), 3000 (1967). DOI: 10.1063/1.1841169
  27. F. Pascale, M. Zicovich-Wilson, F. Lopez Gejo, B. Civalleri, R. Orlando, R. Dovesi. J. Comput. Chem., 25 (6), 888 (2004). DOI: 10.1002/jcc.20019
  28. J. E. Maslar, W. S. Hurst, C. A. Wang. J. Appl. Phys., 104 (10), 103521 (2008). DOI: 10.1063/1.3021159

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru