Structure and Dielectric Properties of Barium-Strontium Niobate Thin Films Grown on MgO(110) and MgO(001) Single-Crystal Substrates
Stryukov D. V.
1, Matyash Ya. Yu.
1, Pavlenko A. V.
11Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
Email: strdl@mail.ru, matyash.ya.yu@gmail.com, tolik_260686@mail.ru
Sr0.6Ba0.4Nb2O6 thin films of ~550 nm thickness with a preliminarily deposited conductive SrRuO3 layer of ~150 nm thickness were grown on MgO(110) and MgO(001) substrates by RF-cathode sputtering in an oxygen atmosphere. X-ray diffraction studies have shown that the obtained films have no unit cell strain, while for barium-strontium niobate film on an MgO(110) substrate it has been found for the first time that the [001] polar axis lies in the interface plane with the substrate. It is shown that the films differ significantly in surface morphology, dielectric and ferroelectric properties measured in the out-of-plane direction. Keywords: thin films, barium-strontium niobate, SBN, MgO(110) substrate.
- M.H. Francombe. Acta Cristallogr. 13, 131 (1960)
- Yu.S. Kuzminov, Segnetoelektricheskie kristally dlya upravleniya lazernym izlucheniem, Nauka, M., (1982), 400 s. (in Russian)
- A.A. Ballman, H. Brown. J. Cryst. Growth 1, 5, 311 (1967)
- N.S. VanDamme, A.E. Sutherland, L. Jones, K. Bridger, S.R. Winzer. J. Am. Ceram. Soc. 74, 8, 1785 (1991)
- S. Podlozhenov, H.A. Graetsch, J. Schneider, M. Ulex, M. Wohlecke, K. Betzler. Acta Crystallogr. B 62, 960 (2006)
- S. Sakamoto, T. Yazaki. Appl. Phys. Lett. 22, 429 (1973)
- V.V. Shvartsman, D.C. Lupascu. J. Am. Ceram. Soc. 95, 1, 1 (2012)
- E.G. Kostsov. Ferroelectrics 314, 169 (2005)
- M. Cuniot-Ponsard. Strontium Barium Niobate Thin Films for Dielectric and Electro-Optic Applications. In Ferroelectrics-Material Aspects / Ed. M. Lallart. InTech, Rijeka, Croatia (2011) P. 497-518
- S. Gupta, A. Paliwal, V. Gupta, M. Tomar. Opt. Laser Technol. 122, 105880 (2020)
- S. Gupta, A. Paliwal, V. Gupta, M. Tomar. Opt. Laser Technol. 137, 106816 (2021)
- S. Ivanov, E.G. Kostsov. IEEE Sens. J. 20, 16, 9011 (2020)
- V.N. V'yukhin, S.D. Ivanov. Optoelectron. Instrum. Data Proc. 54, 502 (2018)
- S.E. Moon, M.H. Kwak, Y.-T. Kim, H.-C. Ryu, S.-J. Lee, K.-Y. Kang. J. Korean Phys. Soc. 46, 1, 273 (2005)
- P.R. Willmott, R. Herger, B.D. Patterson, R. Windiks. Phys. Rev. B 71, 144114 (2005)
- A.V. Pavlenko, D.V. Stryukov, L.I. Ivleva, A.P. Kovtun, K.M. Zhidel, P.A. Lykov, FTT 63, 2, 250 (2021). (in Russian)
- J. Koo, J.H. Jang, B.-S. Bae. J. Am. Ceram. Soc. 84, 1, 193 (2001)
- Y. Xu, C.J. Chen, R. Xu, J.D. Mackenzie. Phys. Rev. B 44, 35 (1991)
- M. Cuniot-Ponsard, J.M. Desvignes, B. Ea-Kim, E. Leroy. J. Appl. Phys. 93, 1718 (2003)
- I.M. Beskin, S. Kwon, A.B. Posadas, M.J. Kim, A.A. Demkov. Adv. Photon. Res. 2, 10, 2100111 (2021)
- M.J. Nystrom, B.W. Wessels, W.P. Lin, G.K. Wong, D.A. Neumayer, T.J. Marks. Appl. Phys. Lett. 66, 1726 (1995)
- V.H. Pedersen, A.B. Blichfeld, K. Bakken, D. Chernyshov, T. Grande, M.-A. Einarsrud. Cryst. Growth Des. 22, 10, 5912 (2022)
- M.K. Lee, R.S. Feigelson. J. Cryst. Growth 180, 220 (1997).
- T.M. Graettinger, S.H. Rou, M.S. Ameen, O. Auciello, A.I. Kingon. Appl. Phys. Lett. 58, 1964 (1991)
- A.V. Pavlenko, L.I. Ivleva, D.V. Stryukov, A.P. Kovtun, A.S. Anokhin, P.A. Lykov, FTT 61, 2, 376 (2019). (in Russian)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.