Non-reciprocal propagation of spin waves in an asymmetric magnonic structure
Grachev A. A. 1, Sadovnikov A. V.1
1Saratov State University, Saratov, Russia
Email: stig133@gmail.com

PDF
This paper presents a study of spin-wave coupling effects in a parallel oriented magnetic microwaveguides made on yttrium iron garnet (YIG) films. The structure consists of two YIG microwaveguides separated by an air gap in the vertical direction, providing a dipole interaction between them, which has a shift relative to each other in the horizontal direction, forming an asymmetric geometry of vertically coupled microwaveguides. Micromagnetic calculation is used to demonstrate the phenomenon of non-reciprocal propagation of spin waves in the asymmetric geometry of vertically coupled microwaveguides. Based on the finite element method, the eigenmode spectrum of the considered structure is calculated under changing polarity of the external magnetic field, which demonstrates the change in dipole coupling of vertically coupled YIG microwaveguides. These results indicate that the manifestation of the non-reciprocal propagation of the spin waves is due to several factors. First, the asymmetric distribution of the internal magnetic field relative to the centers of each magnetic microwave. Second, the dependence of the overlap integral of the eigenmodes on the variation of the polarity of the external magnetic field. Micromagnetic modelling is used to show the transformation of the coupling length of the spin waves as the vertical spacing between the microwaves is varied. The results obtained in this work extend the possibilities of using the considered structure as a directional coupler for spin waves. Keywords: nonreciprocity, magnonics, dipole interaction, coupled structures.
  1. A. Barman, G. Gubbiotti, S. Ladak, A.O. Adeyeye, M. Krawczyk, J. Grafe, C. Adelmann, S. Cotofana, A. Naeemi, V.I. Vasyuchka, B. Hillebands. J. Phys.: Condens. Matter 33, 413001 (2021)
  2. S.A. Nikitov, A.R. Safin, D.V. Kalyabin, A.V. Sadovnikov, E.N. Beginin, M.V. Logunov, M.A. Morozova, S.A. Odintsov, S.A. Osokin, A.Yu. Sharaevskaya, Yu.P. Sharaevsky, A.I. Kirilyuk. Phys. Usp. 63, 945 (2020)
  3. A.V. Kondrashov, A.B. Ustinov, B.A. Kalinikos, Pisma v ZhTF 36, 5, 62 (2010). (in Russian)
  4. S.J. Hamalainen, M. Madami, H. Qin, G. Gubbiotti, S. van Dijken. Nature Commun. 9, 1, 4853 (2018)
  5. G. Csaba, A. Papp, W. Porod. Phys. Lett. A 381, 17, 1471 (2017)
  6. M. Balinskiy, H. Chiang, A. Khitun. Aip Adv. 8, 5 (2018)
  7. Yu.K. Fetisov, A.S. Sigov, Radioelektronika. Nanosistemy. Informatsionnyie tekhnolgii 10, 3, 343 (2018). (in Russian)
  8. K. Vogt, F.Y. Fradin, J.E. Pearson, T. Sebastian, S.D. Bader, B. Hillebrands, A. Hoffmann, H. Schultheiss. Nature Commun. 5, 3727 (2014)
  9. Z. Zhang, M. Vogel, J. Holanda, M.B. Jungfleisch, C. Liu, Y. Li, J.E. Pearson, R. Divan, W. Zhang, A. Hoffmann, Y. Nie, V. Novosad. Appl. Phys. Lett. 115, 232402 (2019)
  10. G.M. Dudko, A.V. Kozhevnikov, Yu.V. Khivintsev, Yu.A. Filimonov, A.G. Khitun, S.A. Nikitov, Radiotekhnika i elektronika 63, 10, 1105 (2018). (in Russian)
  11. X.S. Wang, Y. Su, X.R. Wang. Phys. Rev. B 95, 014435 (2017)
  12. Y. Hashimoto, D. Bossini, T.H. Johansen, E. Saitoh, A. Kirilyuk, T. Rasing. Phys. Rev. B 97, 140404(R) (2018)
  13. R. Gieniusz, P. Gruszecki, M. Krawczyk, U. Guzowska, A. Stognij, A. Maziewski. Sci. Rep. 7, 8771 (2017)
  14. H.G. Bauer, P. Majchrak, T. Kachel, C.H. Back, G. Woltersdorf. Nature Commun. 6, 8274 (2015)
  15. Y. Khivintsev, V. Sakharov, A. Kozhevnikov, G. Dudko, Y. Filimonov, A. Khitun. J. Magn. Magn. Mater. 545, 11, 168754 (2022)
  16. Three-dimensional magnonics: layered, micro-and nanostructures / Ed. G. Gubbiotti. CRC Press (2019)
  17. M. Jamali, J.H. Kwon, S.-M. Seo, K.-J. Lee, H. Yang. Sci. Rep. 3, 1 (2013)
  18. J. Chen, H. Yu, G. Gubbiotti. J. Phys. D 55, 123001 (2021)
  19. H. Wang, J. Chen, T. Yu, C. Liu, C. Guo, S. Liu, K. Shen, H. Jia, T. Liu, J. Zhang. Nano Res. 1 (2020)
  20. P. Deorani, J.H. Kwon, H. Yang. Current Appl. Phys. 14, S129 (2014)
  21. F. Vanderveken, H. Ahmad, M. Heyns, B. Soree, C. Adelmann, F. Ciubotaru. J. Phys. D 53, 495006 (2020)
  22. O. Gladii, M. Haidar, Y. Henry, M. Kostylev, M. Bailleul. Phys. Rev. B 93, 5, 054430 (2016)
  23. P.A. Grunberg. Rev. Mod. Phys. 80, 1531 (2008)
  24. R.A. Gallardo, T. Schneider, A.K. Chaurasiya, A. Oelschlagel, S.S.P.K. Arekapudi, A. Roldan-Molina, R. Hubner, K. Lenz, A. Barman, J. Fassbender, J. Lindner, O. Hellwig, P. Landeros. Phys. Rev. Appl. 12, 034012 (2019)
  25. S. Odintsov, S. Sheshukova, S. Nikitov, E. Lock, E. Beginin, A. Sadovnikov. J. Magn. Magn. Mater. 546, 168736 (2022)
  26. A. Vansteenkiste, J. Leliaert, M. Dvornik, M. Helsen, F. Garcia-Sanchez, B. Van Waeyenberge. AIP Advances 4, 107133 (2014)
  27. M. Krawczyk, D. Grundler. J. Phys.: Condens. Matter 26, 123202 (2014)
  28. P.P. Silvester, R.L. Ferrari. Finite Elements for Electrical Engineers. Cambridge University Press (1996). 541 p
  29. O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu. The finite element method: its basis and fundamental. Elsevier (2005)
  30. D.D. Stancil, A. Prabhakar. Spin waves, N.Y. Springer Sci. (2009)
  31. S. Yoo, B. Guan, R.P. Scott. Microsystems Nanoeng. 2, 1 (2016)
  32. X. Mu, S. Wu, L. Cheng, H. Fu. Appl. Sci. 10, 1538 (2020)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru