Resonant Indirect Exchange Interaction between Localized Spin States in 3D Dirac semimetal
Goryunov Yu. V. 1
1Federal Research Center «Kazan Scientific Center of Russian Academy of Sciences», Kazan, Russia
Email: gorjunov@kfti.knc.ru

PDF
The paper considers the question of the exchange interaction of localized spin states of Eu impurities in the Dirac semimetal α-Cd3As2 by means donor electrons originating from these impurities. Being in a state of chemical compression, the divalent europium ion is inclined, by donating an electron to the conduction band, to pass into a trivalent state with a smaller ionic radius. The existence of europium in the non-magnetic trivalent state occurs only a small part of the time. However, it leads to a slight decrease in its effective local magnetic moment and an increase in the g-factor due to interaction with Dirac electrons. The change in the degree of chemical compression with temperature explains the previously observed temperature dependences of the g-factor and EPR linewidth for impurity Eu2+ ions (g~ 2.2 and g~ 4.4). Taken together, this indicates the presence of a crystallographically selective indirect exchange interaction between localized spins of Eu2+ ions mediated by the donor conduction electrons Keywords: magnetic resonance, Dirac semimetals, magnetic impurities, exchange interaction.
  1. P.W. Anderson. Phys. Rev. 124, 41 (1961)
  2. M.A. Ruderman, C. Kittel. Phys. Rev. 96, 99 (1954)
  3. N. Bloembergen, T.J. Rowland. Phys. Rev. 97, 1679 (1955)
  4. I.Ya. Korenblit, E.F. Shender. Phys.-Usp. 21, 832 (1978)
  5. G.G. Khaliullin, B.I. Kochelaev. Phys. Lett. A 106, 318 (1984)
  6. T.S. Altshuler, Yu.V. Goryunov, M.S. Bresler. Phys. Rev. 73, 235210 (2006)
  7. Hao-Ran Chang, Jianhui Zhou, Shi-Xiong Wang, Wen-Yu Shan, Di Xiao. Phys. Rev. B 92, 241103(R) (2015)
  8. Yu.V. Goryunov, A.N. Nateprov. Phys. Solid State 60, 68 (2018)
  9. S. Borisenko, Q. Gibson, D. Evtushinsky, V. Zabolotnyy, B. Buchner, R.J. Cava. Phys. Rev. Lett. 113, 027603 (2014)
  10. Mazhar N. Ali, Q. Gibson, S. Jeon, B.B. Zhou, A. Yazdani, R.J. Cava. Inorg. Chem. 53, 4062 (2014)
  11. C.Y. Maghfiroh, A. Arkundato, Misto, W. Maulina. J. Phys. Conf. Ser. 1491, 012022 (2020)
  12. R.K. Wangsness. Phys. Rev. 91, 1085 (1953)
  13. J. Feng, Yu. Pang, D. Wu, Zh. Wang, H. Weng, J. Li, X. Dai, Zh. Fang, Yo. Shi, L. Lu. Phys. Rev. B 92, 081306(R) (2015)
  14. I.V. Rozhansky, I.V. Krainov, N.S. Averkiev, B.A. Aronzon, A.B. Davydov, K.I. Kugel, V. Tripathi, E. Lahderanta. Appl. Phys. Lett. 106, 252402 (2015)
  15. K.S. Nemkovski, D.P. Kozlenko, P.A. Alekseev, J.-M. Mignot, A.P. Menushenkov, A.A. Yaroslavtsev, E.S. Clementyev, A.S. Ivanov, S. Rols, B. Klobes, R.P. Hermann, A.V. Gribanov. Phys. Rev. B 94, 195101 (2016)
  16. A.O. Sboychakov, K.I. Kugel, A.L. Rakhmanov. Phys. Rev. B 76, 195113 (2007)
  17. K.I. Kugel', D.I. Khomsky. UFN, 136, 621 (1982). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru