Defect structure of the lithium doped nickel oxide
Shkerin S.N.1, Nikolaev A. Yu.1, Gyrdasova O.I.2, Kuznetsova T.A.1, Mullabaev A.1, Abdurakhimova R.1, Kosov A.1
1Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia
2Institute of Solid State Chemistry, Russian Academy of Sciences, Ural Branch, Yekaterinburg, Russia

Solid derivatives Ni1-xLixO·(0≤ x≤ 0.1) were produced by the thermolysis of formate precursor complexes Ni1-xLix(HCOO)_2·2H2O at 700oC in air. There are two regions of single phase compositions banded by 4 at.% Li one. X-ray structure is Face Centered Cubic (FCC, Fm=3m) for both regions. Experimental molar mass was calculated using a pycnometric density and X-ray data results, taking into consideration chemical composition, determined by isotope method. Structural defects are discussed and application of Raman spectroscopy is pointed to be necessary. Two laser sources (633 and 532 nm) were applied in a temperature region from room temperature up to 700oC. True Stokes lines are distinguished from other Raman lines and they are referred to photoluminescence. After consideration both X-ray and Raman spectroscopy results we concluded that materials structure is fluoride-like (CaF2) with high defect concentration. This structure is stable for compositions with Li concentration more than 4%. Derivatives with Li concentration less than 4% are undergo the transition into the rock salt structure during a high temperature treatment. In contrast with pure cubic NiO its derivatives Ni(Li)O have orthorhombic structure at room temperature. Keywords: Ni(Li)O, pycnometric density, Raman scattering, phase transition.
  1. P.I. Fensham. J. Am. Chem. Soc. 76, 3, 969 (1954)
  2. J Goodenough, D. Wickham, W.J. Croft. J. Phys. Chem. Solids 5, 107 (1958)
  3. G.K. Stepanov, A.M. Trunov. Izv. AN SSSR 6, 67 (1961). (in Russian)
  4. J. Deren, M. Rekas. Roczniki Chem. Ann. Soc. Chim. Polonorum. 46, 1411 (1972)
  5. H. Migeon, M. Zanne, C. Gleitzer, J. Aubry. J. Mater. Sci. 13, 461 (1978)
  6. J. Deren, M. Rekas, G. Rog. Roczniki Chem. Ann. Soc. Chim. Polonorum. 46, 1837 (1972)
  7. E. McCalla, G.H. Carey, J.R. Dahn. Solid State Ionics 219, 11 (2012)
  8. A. Bhatt, R. Ranjitha, M. Santosh, C. Ravikumar, S. Prashantha, R. Maphanga, G. de Silva. Materials 13, 2961 (2020). DOI: 10.3390/ma13132961
  9. S.N. Shkerin, E.S. Yulyanova, E.G. Vovkotrub. Neorgan. materialy 57, 11, 1213 (2021). (in Russian)
  10. S.N. Shkerin, A.N. Meshcherskikh, T.V. Yaroslavtseva, R.K. Abdurakhimova. FTT 64, 12, 1985 (2022). (in Russian)
  11. V.G. Keramidas, W.B. White. J. Chem. Phys. 59, 3, 1561 (1973)
  12. R.S. Krishnan. Proc. Royal Soc. London. Ser. A 187, 1009, 188 (1946)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.


Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245