Formation of silver nanoparticles oligomers obtained via laser ablation in a liquid by sequential centrifugation and ultrasonication: tunable long-wavelength shift of plasmon resonance for biomedical applications
Dadadzhanov D.R. 1, Palekhova A.V.1, Alexan G.1, Baranov M.A. 1, Maslova N.A.2
1International research and educational center for physics of nanostructures, ITMO University, Saint-Petersburg, Russia
2Research Park, Saint Petersburg State University, Saint Petersburg, Russia
Email: daler.dadadzhanov@gmail.com

PDF
A relatively simple physical method has been proposed for fabrication of stable oligomers of silver nanoparticles, preliminarily obtained by pulsed laser ablation of a metal target in a liquid. Oligomers of silver nanoparticles are formed in an aqueous solution after prolonged centrifugation at 18000 g and subsequent ultrasonication of the initial colloidal solution of spherical nanoparticles obtained by laser ablation. The plasmon resonance in oligomers is shifted relative to the plasmon resonance in spherical nanoparticles to the long wavelength region by 140 nm. Keywords: plasmon resonance, silver nanoparticles, laser ablation, extinction.
  1. V. Chandrakala, V. Aruna, G. Angajala. Emergent Materials, 5 (6), 1593-1615 (2022). DOI: 10.1007/S42247-021-00335-X
  2. M. Kim, J.H. Lee, J.M. Nam. Advanced Science, 6 (17), 1900471 (2019). DOI: 10.1002/ADVS.201900471
  3. T. Liu, Y. Song, Z. Huang, X. Pu, Y. Wang, G. Yin, L. Gou, J. Weng, X. Meng. Colloids Surf B Biointerfaces, 207, 112023 (2021). DOI: 10.1016/J.COLSURFB.2021.112023
  4. Y. Gao, Y. Zhou, R. Chandrawati. ACS Appl Nano Mater., 3 (1), 1-21 (2020). DOI: 10.1021/ACSANM.9B02003
  5. H. Yang, W. Xu, Y. Zhou. Microchimica Acta, 186 (12), 1-22 (2019). DOI: 10.1007/S00604-019-3904-9
  6. H. Malekzad, P. Sahandi Zangabad, H. Mirshekari, M. Karimi, M.R. Hamblin. Nanotechnol Rev., 6 (3), 301-329 (2017). DOI: 10.1515/NTREV-2016-0014
  7. D.R. Dadadzhanov, I.A. Gladskikh, M.A. Baranov, T.A. Vartanyan, A. Karabchevsky. Sens. Actuators B Chem., 333, 129453 (2021). DOI: 10.1016/J.SNB.2021.129453
  8. G.A. Sotiriou. Wiley Interdiscip Rev Nanomed Nanobiotechnol., 5 (1), 19-30 (2013). DOI: 10.1002/WNAN.1190
  9. K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz. J. Phys. Chem. B., 107 (3), 668-677 (2003). DOI: 10.1021/JP026731Y
  10. L. Ding, C. Yao, X. Yin, C. Li, Y. Huang, M. Wu, B. Wang, X. Guo, Y. Wang, M. Wu. Small, 14 (42), 1801451 (2018). DOI: 10.1002/SMLL.201801451
  11. K. Kettler, K. Veltman, D. van de Meent, A. van Wezel, A.J. Hendriks. Environ. Toxicol. Chem., 33 (3), 481-492 (2014). DOI: 10.1002/ETC.2470
  12. P. Gurnani, C. Sanchez-Cano, H. Xandri-Monje, J. Zhang, S.H. Ellacott, E.D.H. Mansfield, M. Hartlieb, R. Dallmann, S. Perrier, Small, 18 (38), 2203070 (2022). DOI: 10.1002/SMLL.202203070
  13. N.N. Zhang, H.R. Sun, S. Liu, Y.C. Xing, J. Lu, F. Peng, C.L. Han, Z. Wei, B. Yang, K. Liu. CCS Chemistry, 4 (2), 660-670 (2022). DOI: 10.31635/ccschem.021.202000637
  14. A. Takami, H. Kurita, S. Koda. J. Phys. Chem. B, 103 (8), 1226-1232 (1999). DOI: 10.1021/JP983503O
  15. V. Amendola, M. Meneghetti. Physical Chemistry Chemical Physics, 15 (9), 3027-3046 (2013). DOI: 10.1039/C2CP42895D
  16. F. Mafun., J.Y. Kohno, Y. Takeda, T. Kondow, H. Sawabe. J. Phys. Chem. B, 104 (39), 9111-9117 (2000). DOI: 10.1021/JP001336Y
  17. V. Amendola, S. Polizzi, M. Meneghetti. Langmuir, 23 (12), 6766-6770 (2007). DOI: 10.1021/LA0637061
  18. S.M. Arakelyan, V.P. Veiko, S.V. Kutrovskaya, A.O. Kucherik, A.V. Osipov, T.A. Vartanyan, T.E. Itina. J. Nanoparticle Research, 18 (6), 1-12 (2016). DOI: 10.1007/S11051-016-3468-0
  19. R. Zamiri, A. Zakaria, H.A. Ahangar, M. Darroudi, G. Zamiri, Z. Rizwan, G.P.C. Drummen. Int J Nanomedicine, 8 (1), 233-244 (2013). DOI: 10.2147/IJN.S36036
  20. A. Hahn, S. Barcikowski, B.N. Chichkov. Journal of Laser Micro Nanoengineering, 3 (2), 73-77 (2009). DOI: 10.2961/JLMN.2008.02.0003
  21. V. Piotto, L. Litti, M. Meneghetti. Journal of Physical Chemistry C, 124 (8), 4820-4826 (2020). DOI: 10.1021/ACS.JPCC.9B10793
  22. J. Theerthagiri, K. Karuppasamy, S.J. Lee, R. Shwetharani, H.S. Kim, S.K.K. Pasha, M. Ashokkumar, M.Y. Choi. Light: Science \& Applications, 11 (250), 1-47 (2022). DOI: 10.1038/s41377-022-00904-7
  23. M. Ratti, J.J. Naddeo, J.C. Griepenburg, S.M. O'Malley, D.M. Bubb, E.A. Klein. J. Vis. Exp., (124), 55416 (2017). DOI: 10.3791/55416
  24. D. Di az, A. Molina, D. Hahn. Spectrochim Acta Part B At Spectrosc., 145, 86-95 (2018). DOI: 10.1016/J.SAB.2018.04.007
  25. T. Mohamed, M.H. El-Motlak, S. Mamdouh, M. Ashour, H. Ahmed, H. Qayyum, A. Mahmoud. Materials, 15 (20), 7348 (2022). DOI: 10.3390/MA15207348
  26. V. Scardaci, M. Condorelli, M. Barcellona, L. Salemi, M. Pulvirenti, M.E. Fragala, G. Applied Sciences, 11 (19), 8949 (2021). DOI: 10.3390/APP11198949/S1
  27. F.Y. Alzoubi, J.Y. Al-zou'by, S.K. Theban, M.K. Alqadi, H.M. Al-khateeb, E.S. AlSharo, Nanotechnology for Environmental Engineering, 6 (3), 1-7 (2021). DOI: 10.1007/S41204-021-00165-6
  28. T. Tsuji, M. Tsuji, S. Hashimoto. J. Photochem. Photobiol. A Chem., 221 (2), 224-231 (2011). DOI: 10.1016/J.JPHOTOCHEM.2011.02.020
  29. V. Amendola, M. Meneghetti. Physical Chemistry Chemical Physics, 11 (2), 3805-3821 (2009). DOI: 10.1039/B900654K
  30. G. Wang, C. Yan, S. Gao, Y. Liu. Materials Science and Engineering: C, 103, 109856 (2019). DOI: 10.1016/J.MSEC.2019.109856
  31. K. Bolanos, M.J. Kogan, E. Araya. Int. J. Nanomedicine, 14, 6387-6406 (2019). DOI: 10.2147/IJN.S210992
  32. J.P. Sylvestre, S. Poulin, A.V. Kabashin, E. Sacher, M. Meunier, J.H.T. Luong. Journal of Physical Chemistry B, 108 (43), 16864.-6869 (2004). DOI: 10.1021/JP047134
  33. K.K. Kim, H.J. Kwon, S.K. Shin, J.K. Song, S.M. Park. Chem Phys Lett., 588, 167-173 (2013). DOI: 10.1016/J.CPLETT.2013.10.011
  34. E. Fazio, B. Gokce, A. De Giacomo, M. Meneghetti, G. Compagnini, M. Tommasini, F. Waag, A. Lucotti, C.G. Zanchi, P.M. Ossi, M. Dell'aglio, L. D'urso, M. Condorelli, V. Scardaci, F. Biscaglia, L. Litti, M. Gobbo, G. Gallo, M. Santoro, S. Trusso, F. Neri. Nanomaterials, 10 (11), 2317 (2020). DOI: 10.3390/NANO10112317
  35. M.I. Zhilnikova, E.V. Barmina, G.A. Shafeev, S.M. Pridvorova, O.V. Uvarov. Gold Bull., 53 (3), 129-134. DOI: 10.1007/S13404-020-00281-2
  36. M.I. Zhil'nikova, E.V. Barmina, G.A. Shafeev. Physics of Wave Phenomena, 26 (2), 85-92 (2018). DOI: 10.3103/S1541308X18020024
  37. A.V. Simakin, I.V. Baimler, V.V. Smirnova, O.V. Uvarov, V.A. Kozlov, S.V. Gudkov. Physics of Wave Phenomena, 29 (2), 102-107 (2021). DOI: 10.3103/S1541308X21020126
  38. H. Marrapu, R. Avasarala, V.R. Soma, S.K. Balivada, G.K. Podagatlapalli. RSC Adv., 10 (67), 41217-41228 (2020). DOI: 10.1039/D0RA05942K
  39. H. Qayyum, W. Ahmed, S. Hussain, G.A. Khan, Z.U. Rehman, S. Ullah, T.U. Rahman, A.H. Dogar. Opt Laser Technol., 129, 106313 (2020). DOI: 10.1016/J.OPTLASTEC.2020.106313
  40. A. Heuer-Jungemann, N. Feliu, I. Bakaimi, M. Hamaly, A. Alkilany, I. Chakraborty, A. Masood, M.F. Casula, A. Kostopoulou, E. Oh, K. Susumu, M.H. Stewart, I.L. Medintz, E. Stratakis, W.J. Parak, A.G. Kanaras. Chem Rev., 119 (8), 4819-4880 (2019). DOI: 10.1021/ACS.CHEMREV.8B00733
  41. Z.C. Xu, C.M. Shen, C.W. Xiao, T.Z. Yang, H.R. Zhang, J.Q. Li, H.L. Li, H.J. Gao. Nanotechnology, 18 (11), 115608 (2007). DOI: 10.1088/0957-4484/18/11/115608
  42. D. Rioux, M. Meunier. J. Phys. Chem. C, 119 (23), 13160-13168 (2015). DOI: 10.1021/ACS.JPCC.5B02728
  43. F. Dong, E. Valsami-Jones, J.U. Kreft. J. Nanoparticle Research, 18 (9), 1-12 (2016). DOI: 10.1007/S11051-016-3565-0
  44. M.C. Sportelli, M. Clemente, M. Izzi, A. Volpe, A. Ancona, R.A. Picca, G. Palazzo, N. Cioffi. Colloids Surf. A Physicochem. Eng. Asp., 559, 148-158 (2018). DOI: 10.1016/J.COLSURFA.2018.09.046
  45. A. Rao, H. Colfen. Comprehensive Supramolecular Chemistry II, (Elsevier, Walthm, MA, USA, 2017), p. 129-156. DOI: 10.1016/B978-0-12-409547-2.12638-1
  46. B. Khodashenas, H.R. Ghorbani. Arabian J. Chemistry, 12 (9), 1823-1838 (2019). DOI: 10.1016/J.ARABJC.2014.12.014
  47. W. Li, P.H.C. Camargo, X. Lu, Y. Xia. Nano Lett., 9 (1), 485-490 (2009). DOI: 10.1021/NL803621X
  48. H.A. Alluhaybi, S.K. Ghoshal, W.N.W. Shamsuri, B.O. Alsobhi, A.A. Salim, G. Krishnan. Nano-Structures \& Nano-Objects, 19, 100355 (2019). DOI: 10.1016/J.NANOSO.2019.100355
  49. A.R. Ziefub, S. Reichenberger, C. Rehbock, I. Chakraborty, M. Gharib, W.J. Parak, S. Barcikowski. J. Phys. Chem. C, 122 (38), 22125-22136 (2018). DOI: 10.1021/ACS.JPCC.8B04374
  50. M.A. Valverde-Alva, T. Garci a-Fernandez, E. Esparza-Alegri a, M. Villagran-Muniz, C. Sanchez-Ake, R. Castaneda-Guzman, M.B. De La Mora, C.E. Marquez-Herrera, J.L. Sanchez Llamazares. Laser Phys. Lett., 13 (10), 106002 (2016). DOI: 10.1088/1612-2011/13/10/106002
  51. A. Menendez-Manjon, B.N. Chichkov, S. Barcikowski. J. Phys. Chem. C, 114 (6), 2499-2504 (2010). DOI: 10.1021/JP909897V

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru