Monitoring of localized plasmon resonance in an inhomogeneous ensemble of silver nanoparticles at the boundary of two media
Starovoytov A. A.
1, Fandeev A. A.
1, Nikitin I. Y.
1, Gladskikh I. A.
1, Dadadzhanov D. R.
11ITMO University, St. Petersburg, Russia
Email: anton.starovoytov@gmail.com, 138020@mail.ru, daler.dadadzhanov@gmail.com
Optical properties of an inhomogeneous ensemble of plasmonic silver nanoparticles obtained by thermal vacuum deposition at the interface between two media as this interface moves relative to the nanoparticles themselves have been studied. The movement was carried out due to thermally stimulated diffusion of nanoparticles into the polystyrene layer and due to the deposition of an additional layer of quartz on a granular film with nanoparticles on a quartz substrate. The frequency shifts of the inhomogeneous plasmon resonance of nanoparticles moving through the interface was to about two tens of nanometers. Keywords: plasmon, nanoparticle, physical vacuum deposition, plasmon resonance.
- K.Ko ataj, J. Krajczewski, A. Kudelski. Environ. Chem. Lett., 18, 529 (2020). DOI: 10.1007/s10311-019-00962-1
- S. Gao, R. Zhou, S. Samanta, J. Qu, T.Y. Ohulchanskyy. Analytica Chimica Acta, 1254, 341086 (2023). DOI: 10.1016/j.aca.2023.341086
- M.T. Yaraki, Y.N. Tan. Chemistry --- An Asian Journal, 15 (20), 3180 (2020). DOI: 10.1002/asia.202000847
- W. Zhang, H. Li, E. Hopmann, A. Elezzabi. Nanophotonics, 10 (2), 825 (2021). DOI: 10.1515/nanoph-2020-0474
- K. Khurana, N. Jaggi. Plasmonics, 16 (4), 981 (2021). DOI: 10.1007/s11468-021-01381-1-999
- T.P. Araujo, J. Quiroz, E.C. Barbosa, P.H. Camargo. Current Opinion in Colloid \& Interface Science, 39, 110 (2019). DOI: 10.1016/j.cocis.2019.01.014
- M. Ha, J.-H. Kim, M. You, Q. Li, C. Fan, J.-M. Nam. Chemical Reviews, 119 (24), 12208 (2019). DOI: 10.1021/acs.chemrev.9b00234
- K.V. Baryshnikova, M.I. Petrov, T.A. Vartanyan. Physica Status Solidi (RRL) --- Rapid Research Letters, 9 (12), 711 (2015). DOI: 10.1002/pssr.201510330
- J. Rozra, I. Saini, S. Aggarwal, A. Sharma. Adv. Mat. Lett., 4 (8), 598 (2013). DOI: 10.5185/amlett.2013.1402
- X.-F. Zhang, Z.-G. Liu, W. Shen, S. Gurunathan. Int. J. Mol. Sci., 17, 1534 (2016). DOI: 10.3390/ijms17091534
- M. Mostafa, N.G. Kandile, M.K. Mahmoud, H.M. Ibrahim. Heliyon, 8 (1), e08772 (2022). DOI: 10.1016/j.heliyon.2022.e08772
- C.A. Ballesteros, D.S. Correa, V. Zucolotto. Materials Science and Engineering: C, 107, 110334 (2020). DOI: 10.1016/j.msec.2019.110334
- N.B. Leonov, I.A. Gladskikh, V.A. Polishchuk, T.A. Vartanyan. Opt. i spektr., 119 (3), 458 (2015) (in Russian). DOI 10.7868/S0030403415090202 [N.B. Leonov, I.A. Gladskikh, V.A. Polishchuk, T.A. Vartanyan Opt. Spectr., 119 (3), 450 (2015). DOI: 10.1134/S0030400X15090179]
- G. Vignaud, M.S. Chebil, J.K. Bal, N. Delorme, T. Beuvier, Y. Grohens, A. Gibaud. Langmuir, 30 (39), 11599 (2014). DOI: 10.1021/la501639z
- I.A. Gladskikh, T.A. Vartanyan. Opt. Spectr., 121 (6), 851 (2016). DOI 10.1134/S0030400X16120109
- K. Ladutenko, U. Pal, A. Rivera, O. Pena-Rodri guez. Computer Physics Communications, 214, 225 (2017). DOI: 10.1016/j.cpc.2017.01.017
- M.D. Ediger, J.A. Forrest. Macromolecules, 47 (2), 471 (2014). DOI: 10.1021/ma4017696
- M. Bushell, A. Ianoul. The Journal of Physical Chemistry C, 122 (18), 10197 (2018). DOI: 10.1021/acs.jpcc.8b00314
- K.L. Kelly, E. Coronado, L. Zhao, G.C. Schatz. J. Physical Chem. B., 107, 668 (2003). DOI: 10.1021/jp026731y
- L.P. Amosova, N.B. Leonov, N.A. Toropov. Opt. spektr. 121 (6), 901 (2016) (in Russian). DOI: 10.7868/S0030403416120035
- R.D. Nabiullina, A.A. Starovoitov, N.A. Toropov. J. Opt. Techn., 84 (7), 453 (2017)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.