Optical spectra of a photonic crystal structure with graphene layers
Eliseeva S.V. 1, Sementsov D. I. 1
1Ulyanovsk State University, Ulyanovsk, Russia
Email: eliseeva-sv@yandex.ru, sementsovdi42@mail.ru

PDF
The transformation of the graphene-containing optical spectra photonic-crystal structure with a change in the chemical potential (μ) of graphene is studied. In the period of the structure, one layer is a graphene-containing periodic medium (SiO2/Gr)n, and the second layer is assumed to be made of pure silicon. In the case of unexcited graphene (μ=0), the absorption in the structure exceeds the reflection and transmission for frequencies outside the photonic band gaps. Within these zones, most of the incident radiation is reflected, and there is no transmission at all. As μ increases outside the band gaps, the absorption decreases in the low-frequency region, and the transmission increases the stronger, the greater μ. In a structure with an inversion defect inside the band gaps, either suppression or significant rearrangement of the defect mode takes place. Keywords: graphene, effective medium, photonic crystal structure, transfer matrices, reflection, transmission and absorption spectra, photonic band gap, defect mode.
  1. S.V. Morozov, K.S. Novoselov, A.K. Geim. UFN, 178 (7), 776 (2008) (in Russian)
  2. A. Madani, S.R. Entezar. Phys. B, 431, 1 (2013)
  3. M. Zamani, M. Abbasnejad. Physica C: Superconductivity and its Applications, 554, 19 (2018)
  4. B. Kuzmenko, E. van Heumen, F. Carbone, D. van der Marel. Phys. Rev. Lett., 100 (11), 117401 (2008)
  5. R.R. Nair, P. Blake, A.N. Grigorenko, K.S. Novoselov, T.J. Booth, T. Stauber, N.M.R. Peres, A.K. Geim. Science, 320, 1308 (2008)
  6. K.F. Mak, M.Y. Sfeir, Ya. Wu, C.H. Lui, J.A. Misewich, T.F. Heinz. Phys. Rev. Lett., 101, 196405 (2008)
  7. Z. Ahmad, E.A. Muljarov, S.S. Oh. Phys. Rev. B, 104 (8), 085426 (2021)
  8. M.S.D. Vasconcelos, M.G. Cottam. J. Phys. D: Appl. Phys., 53 (13), 135101 (2020)
  9. M.A. Othman, C. Guclu, F. Capolino. Opt. Express, 21 (6), 7614 (2013)
  10. D. Jahani, A. Soltani-Vala, J. Barvestani, H. Hajian J. Appl. Phys., 115, 153101 (2014)
  11. S.A. El-Naggar Opt. Quant. Electron., 47 (7), 1627 (2015)
  12. S. Razi, F. Sepahi, A.A. Saray. Physica B: Condensed Matter, 597, 412380 (2020)
  13. X.H. Deng, J.T. Liu, J.R. Yuan, Q.H. Liao, N.H. Liu. Europhys. Lett., 109, 27002 (2015)
  14. L.A. Falkovsky J. Phys.: Conference Series, 129 (1), 012004 (2008)
  15. T. Zhang, M.Y. Mao, Y. Ma, D. Zhang, H.F. Zhang. Optik, 223, 165636 (2020)
  16. D.A. Smirnova, I.V. Iorsh, I.V. Shadrivov, Y.S. Kivshar. JETP Lett., 99 (8), 456 (2014)
  17. A. Rashidi, A. Namdar, R. Abdi-Ghaleh. Superlattices and Microstructures, 105, 74 (2017)
  18. A. Madani, S.R. Entezar. Superlattices and Microstructures., 86, 105 (2015)
  19. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer. Sol. Stat. Commun., 146 (9-10), 351 (2008)
  20. V. Ryzhii, A. Satou, T. Otsuji. J. Appl. Phys., 101 (2), 024509 (2007)
  21. C. Attaccalite, L. Wirtz, M. Lazzeri, F. Mauri, A. Rubio. Nano Lett., 10, 1172 (2010)
  22. M. Born, E. Wolf. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (Elsevier, 2013)
  23. J. Fu, W. Chen, B. Lv. Phys. Lett. A, 380 (20), 1793 (2016)
  24. W. Belhadj, N.B. Ali, H. Dakhlaoui, O.H. Alsalmi, H. Alsaif, A. Torchani. The Eur. Phys. J. B, 94 (10), 1 (2021)
  25. H. Da, G. Liang. Appl. Phys. Lett., 98 (26), 261915 (2011)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru