Comparison of the laser generation parameters in the coherent and in the standard incoherent passive mode locking regime
Arkhipov R. M.1,2, Arkhipov M. V.2, Diachkova O. O.1, Pakhomov A. V.1, Rosanov N. N. 2
1St. Petersburg State University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
Email: arkhipovrostislav@gmail.com, m.arkhipov@klnran.ru, o.o.dyachkova@gmail.com, antpakhom@gmail.com, nnrosanov@mail.ru

PDF
A comparison of the generation efficiency of short pulses with coherent and standard passive (incoherent) mode locking with a saturable absorber is made on the basis of numerical simulations. The advantage of the coherent mode locking in comparison to the standard mode locking in lasers with a saturable absorber is shown. Coherent mode locking in two-section lasers is based on the coherent interaction of the radiation with the absorbing and amplifying media. It allows the generation of ultrashort laser pulses with a duration shorter than the polarisation relaxation time T2 of the absorbing and amplifying media. In conventional lasers with standard (incoherent) passive mode locking with a saturable absorber, the interaction of the laser pulses with the absorbing and amplifying media is incoherent and the duration of the generated pulses is always limited by the polarization relaxation time T2 of the absorber and amplifier. Keywords: passive mode locking, coherent mode locking, self-induced transparency.
  1. U. Keller. Nature, 424, 831 (2003)
  2. U. Keller. Appl. Phys. B, 100, 15 (2010)
  3. E. Rafailov, M. Cataluna, W. Sibbett. Nature Photon., 1, 395 (2007)
  4. J.C. Diels, W. Rudolph. Ultrashort laser pulse phenomena (Elsevier, 2006)
  5. P.G. Kryukov. Phys. Usp., 56, 849 (2013)
  6. S.L. McCall, E.L. Hahn. Phys. Rev., 183, 457 (1969)
  7. P.G. Kryukov, V.S. Letokhov. Sov. Phys. Usp., 12, 641 (1970)
  8. L. Allen, J.H. Eberly. Optical resonance and two-level atoms (Wiley, New York, 1975)
  9. N.N. Rosanov, I.A. Aleksandrov, M.V. Arkhipov, R.M. Arkhipov, I. Babushkin, N.A. Veretenov, A.V. Dadeko, D.A. Tumakov, S.V. Fedorov. Quantum Electron., 51, 959 (2021)
  10. V.V. Kozlov. Phys. Rev. A, 56, 1607 (1997)
  11. C.R. Menyuk, M.A. Talukder. Phys. Rev. Lett., 102, 023903 (2009)
  12. M.A. Talukder, C.R. Menyuk. Phys. Rev. A, 79, 063841 (2009)
  13. V.V. Kozlov, N.N. Rosanov, S. Wabnitz. Phys. Rev. A, 84, 053810 (2011)
  14. V.V. Kozlov, N.N. Rosanov. Phys. Rev. A, 87, 043836 (2013)
  15. R. Arkhipov, M. Arkhipov, I. Babushkin. JETP Lett., 101, 149 (2015)
  16. R. Arkhipov. Modeling of mode-locking regimes in lasers. Ph.D. thesis, Humboldt-Universitat zu Berlin, Mathematisch-Naturwissenschaftliche Fakultat (2015)
  17. R. Arkhipov, M. Arkhipov, I. Babushkin. Opt. Commun., 361, 73 (2016)
  18. R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, N.N. Rosanov. Opt. Lett., 41, 737 (2016)
  19. R. Arkhipov, M. Arkhipov, A. Pakhomov, I. Babushkin, N. Rosanov. Phys. Rev. A, 105, 013526 (2022)
  20. A. Pakhomov, M. Arkhipov, N. Rosanov, R. Arkhipov. Phys. Rev. A, 107 (1), 013510 (2023)
  21. R.M. Arkhipov, A.V. Pakhomov, M.V. Arkhipov, I.V. Babushkin, N.N. Rosanov. Sci. Rep., 11, 1147 (2021)
  22. A. Outafat, S. Faci, E. Richalot, S. Protat, C. Algani. Opt. Quant. Electron., 54 (5), 283 (2022)
  23. M.V. Arkhipov, R.M. Arkhipov, A.A. Shimko, I. Babushkin. JETP Lett., 101, 232 (2015)
  24. M.V. Arkhipov, A.A. Shimko, R.M. Arkhipov, I. Babushkin, A.A. Kalinichev, A. Demircan, U. Morgner, N.N. Rosanov. Laser Phys. Lett., 15, 075003 (2018)
  25. M.V. Arkhipov, R.M. Arkhipov, A.A. Shimko, I. Babushkin, N.N. Rosanov. JETP Lett., 109 (10), 634 (2019)
  26. M.V. Arkhipov, A.A. Shimko, N.N. Rosanov, I. Babushkin, R.M. Arkhipov. Phys. Rev. A, 101 (1), 013803 (2020)
  27. H. Haus. IEEE J. Quantum Electronics, 11 (9), 736 (1975)
  28. H.A. Haus. J. Appl. Phys., 46 (7), 3049 (1975)
  29. H.A. Haus. IEEE J. Selected Topics in QuantumElectronics, 6 (6), 1173 (2000)
  30. G.H.C. New. IEEE J. Quantum Electronics, 10 (2), 115 (1974)
  31. F.X. Kartner, I.D. Jung, U. Keller. IEEE J. Selected Topics in Quantum Electronics, 2 (3), 540 (1996)
  32. F.X. Kurtner, J.A. der Au, U. Keller. IEEE J. Selected Topics in Quantum Electronics, 4 (2), 159 (1998)
  33. R. Paschotta, U. Keller. Appl. Phys. B, 73 (7), 653 (2001)
  34. A.G. Vladimirov, D. Turaev. Phys. Rev. A, 72 (3), 033808 (2005)
  35. Y. Song, Z. Wang, C. Wang, K. Panajotov, H. Zhang. Adv. Photon., 2, 024001 (2020)
  36. Y. Han, Y. Guo, B. Gao, C. Ma, R. Zhang, H. Zhang. Prog. Quant. Elect., 71, 100264 (2020)
  37. J. Liu, J. Wu, H. Chen, Y. Chen, Z. Wang, C. Ma, H. Zhang. Science China Phys., Mech., Astr., 64, 1 (2021)
  38. M.G. Thompson, A.R. Rae, M. Xia, R.V. Penty, I.H. White. IEEE J. Selected Topics in Quantum Electronics, 15 (3), 661 (2009)
  39. E.U. Rafailov, M.A. Cataluna, W. Sibbett, N.D. Il'inskaya, Y.M. Zadiranov, A.E. Zhukov, V.M. Ustinov, D.A. Livshits, A.R. Kovsh, N.N. Ledentsov. Appl. Phys. Lett., 87, 081107 (2005)
  40. A. Yadav, N.B. Chichkov, E.A. Avrutin, A. Gorodetsky, E.U. Rafailov. Prog. Quant. Electron., 87, 100451 (2023)
  41. U. Morgner, F.X. Kartner, S.H. Cho, Y. Chen, H.A. Haus, J.G. Fujimoto, E.P. Ippen, V. Scheuer, G. Angelow, T. Tschudi. Opt. Lett., 24, 411 (1999)
  42. G. Mourou. Rev. Mod. Phys., 91 (3), 030501 (2019)
  43. H.M. Gibbs, R.E. Slusher. Appl. Phys. Lett., 18 (11), 505 (1971)
  44. P. Borri, W. Langbein, S. Schneider, U. Woggon, R. Sellin, D. Ouyang, D. Bimberg. Phys. Rev. B, 66, 081306 (2002).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru