On the Modeling of Equivalent Transfer Function and Impulse Response of the Fourier-Holography Scheme under the High-frequency Holograms
Pavlov A. V. 1, Gaugel A.O.1
1ITMO University, St. Petersburg, Russia
Email: avpavlov@itmo.ru, gaugelartur@yandex.ru

PDF
An approach for modeling the transfer function and approximating the impulse response in the +1 diffraction order of the 4f holography scheme of the Fourier holography under usage of high-frequency holograms characterized by the presence of an inverse section of the dependence of the local diffraction efficiency on the spatial frequency in the frequency range below the frequency of equality of local amplitudes of the reference spectrum and the reference beam by the model of "Difference of Gaussians" is proposed and justified. The expediency of using, when implementing processing models that involve working only with the global maximum of the circuit response, a transfer function that is equivalent in terms of the minimum mean square error of the impulse response, as providing a more accurate approximation of the impulse response compared to the approximation of the direct transfer function, is shown. The validity of the approach is confirmed by comparing the simulation results with experimental data Keywords: Holography, Fourier-transform, Transfer Function, Impulse Response, Holographic Recording Media, Exposure Characteristic.
  1. L.M. Soroko. Osnovy golografii i kogerentnoy optiki. M.: Nauka, 1971. 616 p. (in Russian)
  2. A.M. Kuleshov, E.I. Shubnikov, S.A. Smaeva. Opt. Spectrosc., 60 (6), 791 (1986)
  3. A.M. Kuleshov, E.I. Shubnikiv. Opt. Spectrosc., 60 (3), 369 (1986)
  4. V.A. Barachevsky. Opt. Spectrosc., 124 (3), 373 (2018). DOI: 10.21883/OS.2018.03.45659.238-17
  5. L.P. Amosova, N.I. Pletneva,, A.N. Chaika. J. Optical Technology, 72 (6), 469 (2005). DOI: 10.1364/JOT.72.000469
  6. L.P. Amosova, A.N. Chavi ka. Technical Phys. Lett., 33 (6), 255 (2007) DOI: 10.1134/S1063785007030200
  7. E.I. Shubnikiv A.M. Kuleshov. Opt. Spectrosc., 55 (1), 94 (1983)
  8. A.M. Kuleshov, E.I. Shubnikiv. Opt. Spectrosc., 60 (3), 369 (1986)
  9. S.A. Aleksandrina, A.M. .Kuleshov. Opt. i spectr., 68 (3), 652 (1990) (in Russian)
  10. S.A. Shoydin, M.S. Kovalev. Opt. Spectrosc., 128 (7), 885 (2020). DOI: 10.21883/OS.2020.07.49557.108-20
  11. Yu.F. Shlyak Opt. i spectr., 57 (3), 484 (1984) (in Russian)
  12. Yu.F. Shlyak Opt. i spectr., 57 (4), 696 (1984) (in Russian)
  13. A.M. Yaglom. Korrelyacionnaya teoriya stacionarnyh sluchajnyh funkcij. L.: Gidrometeoizdat, 1981. 280 p. (in Russian)
  14. A.E. Altynov, V.V. Gruzinov, I.V. . Mishin. Izvestiya Vuzov. Geodeziya i aerofotosyomka, (1), 2017, 34 (in Russian). URL: https://elibrary.ru/download/elibrary_28341894_68655679.pdf
  15. A.M. Alekseev, A.V. Pavlov. Opt. Spectrosc. 108, 137-142 (2010). DOI: 10.1134/S0030400X10010212
  16. A.V. Pavlov, A.O. Gaugel, A.M. Alekseev. Opt. i spektr., 130 (9), 1389 (2022) (in Russian). DOI: 10.21883/OS.2022.09.53300.3478-22
  17. E.I. Shubnikiv. Opt. Spectrosc., 62 (2), 268 (1987)
  18. E.I. Shubnikiv. Opt. Spectrosc., 62 (3), 389 (1987)
  19. A.V. Pavlov. Opt. Spectrosc., 90 (3), 452 (2001). DOI: 10.1134/1.1358459
  20. A.V. Pavlov. Opt. Spectrosc., 119 (1), 146 (2015). DOI: 10.1134/S0030400X1507022X
  21. A.V. Pavlov. Komp'yuternaya optika, 44 (5), 728 (2020). (in Russian). DOI: 10.18287/2412-6179-CO-668
  22. P.A. Ruchka, N.M. Verenikina, I.V. Gritsenko, E.Yu. Zlokazov, M.S. Kovalev, G.K. Krasin, S.B. Odinokov, N.G. Stsepuro. Opt. Spectrosc., 127, 618 (2019). DOI: 10.21883/OS.2019.10.48358.172-19
  23. E.Yu. Zlokazov. Quantum Elrctronics, 50 (7), 643 (2020). DOI: 10.1070/QEL17291
  24. N.N. Evtikhiev, E.Yu. Zlokazov, V.V. Krasnov, V.G. Rodin, R.S. Starikov, P.A. Cheremkhin. Quantum Electronics, 50 (7), 667 (2020). DOI: 10.1070/QEL17295
  25. N.M. Astaf'eva. Physics-Uspekhi, 39 (11) 1065 (1996). DOI: 10.1070/PU1996v039n11ABEH000177
  26. R.R. Jingade, R.S. Kunt. Expert Systems with Applications, 201, 117207 (2022). DOI: 10.1016/j.eswa.2022.117207
  27. J. Abacousnac, D.G. Grier. Opt. Express, 30, 23568 (2022). DOI: 10.1364/OE.458544
  28. Richard M. Crownover. Introduction to Chaos and Fractals. Jones and Bartlett Publishers, Inc., Boston, London, 1995
  29. M.M. Miroshnikov. Teoreticheskie osnovy optiko-elektronnyh priborov. L.Mashinostroenie. 1977. 600 p. (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru