Structural and electronic properties of composite memristors based on the LiNbO3 3 matrix with different nanogranules: Co-Fe-B and CoFe
Chernoglazov K. Yu.1, Chumakov R. G.1, Khramov E. V.1, Nikiruy K. E.1, Sitnikov A. V. 1,2, Demin V. A.1, Pashaev E. M.1, Rylkov V. V. 1,3
1National Research Center “Kurchatov Institute”, Moscow, Russia
2Voronezh State Technical University, Voronezh, Russia
3Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
Email: expe28@gmail.com, Ratibor.chumakov@gmail.com, evxramov@gmail.com, nikiruykristina@gmail.com, sitnikov04@mail.ru, demin_va@nrcki.ru, elkhanpashaev@gmail.com, vvrylkov@mail.ru

PDF
Comparative studies of the properties of metal/nanocomposite/metal (M/NC/M) memristive structures based on NC consisting of a LiNbO3 matrix and various Co-Fe-B or CoFe metal granules have been carried out. The M/NC/M structures were obtained using ion-beam sputtering from composite targets Co40Fe40B20-LiNbO3 and Co50Fe50-LiNbO3 on glass-ceramic substrates. The same NC layers were synthesized on polyimide substrates to study the structural features by X-ray absorption fine structure spectroscopy (XAFS). The XAFS data show an identical crystal structure of granules in both types of NC, indicating that a significant part of the B atoms during the synthesis of NC is in an insulating matrix, forming an oxide of the B2O3, which is confirmed by X-ray photoelectron spectroscopy data. In this case, no metallic state of niobium is observed in the layers. Both types of M/NC/M structures demonstrate resistive switching (RS), however, in the case of NC with boron, the RS effect is much stronger, which is explained by the significant role of oxygen vacancies formed during the oxidation of boron in the RS. Keywords: memristors, metal-dielectric nanocomposites, resistive switching, neuromorphic systems, synchrotron light source, XAFS, XPS.
  1. Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang, Q. Xia, J.J. Yang. Nature Rev. Mater. 5, 173 (2020)
  2. F. Zahoor, T.Z. Azni Zulkifli, F.A. Khanday. Nanoscale Res. Lett. 15, 90 (2020)
  3. W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan, W. i Mao, J. Yang, L. Chu, X. Li. Nano-Micro Lett. 13, 85 (2021)
  4. M. Lanza1, A. Sebastian, W.D. Lu, M.L. Gallo, M.-F. Chang, D. Akinwande, F.M. Puglisi, H.N. Alshareef, M. Liu, J.B. Roldan. Science 376, 1066 (2022)
  5. Q. Xia, J.J. Yang. Nature Mater. 18, 309 (2019)
  6. V.V. Rylkov, S.N. Nikolaev, V.A. Demin, A.V. Emelyanov, A.V. Sitnikov, K.E. Nikiruy, V.A. Levanov, M.Yu. Presnyakov, A.N. Taldenkov, A.L. Vasil'ev, K.Yu. Chernoglazov, A.S. Vedeneev, Yu.E. Kalinin, A.B. Granovsky, V.V. Tugushev, A.S. Bugaev. ZhETF 153, 424 (2018). (in Russian)
  7. M.N. Martyshov, A.V. Emelyanov, V.A. Demin, K.E. Nikiruy, A.A. Minnekhanov, S.N. Nikolaev, A.N. Taldenkov, A.V. Ovcharov, M.Yu. Presnyakov, A.V. Sitnikov, A.L. Vasiliev, P.A. Forsh, A.B. Granovskiy, P.K. Kashkarov, M.V. Kovalchuk, V.V. Rylkov. Phys. Rev. Appl. 14, 034016 (2020)
  8. V.V. Rylkov, A.V. Emelyanov, S.N. Nikolaev, K.E. Nikiruy, A.V. Sitnikov, E.A. Fadeev, V.A. Demin, A.B. Granovsky. ZhETF 158, 164 (2020). (in Russian)
  9. A.V. Emelyanov, K.E. Nikiruy, A.V. Serenko, A.V. Sitnikov, M.Yu. Presnyakov, R.B. Rybka, A.G. Sboev, V.V. Rylkov, P.K. Kashkarov, M.V. Kovalchuk, V.A. Demin. Nanotechnology 31, 045201 (2020)
  10. V.A. Demin, D.V. Nekhaev, I.A. Surazhevsky, K.E. Nikiruy, A.V. Emelyanov, S.N. Nikolaev, V.V. Rylkov, M.V. Kovalchuk. Neural Networks 134, 64 (2021)
  11. A.N. Matsukatova, A.I. Ilyasov, K.E. Nikiruy, E.V. Kukueva, A.L. Vasiliev, B.V. Goncharov, A.V. Sitnikov, M.L. Zanaveskin, A.S. Bugaev, V.A. Demin, V.V. Rylkov, A.V. Emelyanov. Nanomaterials 12, 3455 (2022)
  12. Y.-T. Chen and S.M. Xie. J. Nanomater. 2012, 486284( 2012)
  13. G.V. Swamy, H. Pandey, A.K. Srivastava, M.K. Dalai, K.K. Maurya, Rashmi, R.K. Rakshit. AIP Adv. 3, 072129 (2013)
  14. V.V. Rylkov, S.N. Nikolaev, K.Yu. Chernoglazov, V.A. Demin, A.V. Sitnikov, M.Yu. Presnyakov, A.L. Vasiliev, N.S. Perov, A.S. Vedeneev, Yu.E. Kalinin, V.V. Tugushev, A.B. Granovsky. Phys. Rev. B 95, 144202 (2017)
  15. A. Chernyshov, A. Veligzhanin, Y. Zubavichus. Nucl. Instr. Meth. Phys. Res. A. 603, 95 (2009)
  16. N. Trofimova, A. Veligzhanin, V. Murzin, A. Chernyshov, E. Khramov, V. Zabluda, I. Edel'man, Y. Slovokhotov, Y. Zubavichus. Ross. Nanotechnol. 8, 396 (2013)
  17. B. Ravel. J. Synchrotron. Rad. 12, 537 (2005)
  18. M. Newille. J. Synchrotron. Rad. 8, 322 (2001)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru