Application of machine learning for the diagnosis of some socially significant diseases from an exhaled human air by the infrared laser spectroscopy
Golyak Ig. S. 1, Berezhanskiy P. V. 2, Sedova A. Yu 2, Gutyrchik T. A. 2, Nebritova O. A. 1, Morozov A. N. 1, Anfimov D. R. 1, Vintaykin I. B. 1, Konopleva A. A.1, Demkin P. P.1, Fufurin I. L. 1
1Bauman Moscow State Technical University, Moscow, Russia
2Morozov Children’s Clinical Hospital, State Budgetary Healthcare Institution, Moscow Healthcare Pulmonology Department, Moscow, Russia
Email: igorgolyak@yandex.ru, p.berezhanskiy@mail.ru, khiger.a@mail.ru, tanya_2904@list.ru, o.nebritova@outlook.com, amor59@mail.ru, diman_anfimov@mail.ru, vintaikin_ivan@mail.ru, konoplevaaaliiina@gmail.com, demkin.pavel1996@yandex.ru, igfil@mail.ru

PDF
The infrared spectra of the air exhaled by several groups of volunteers were studied: those suffering from type 1 diabetes, bronchial asthma, and pneumonia. To record infrared spectra, a tunable quantum-cascade laser (QCL) was used. QCL emits in the wavelength range from 5.3 to 12.8 μm in a pulsed mode with a pulse width of 50 ns, a power of up to 150 mW, and a tuning step of 1 cm-1. The laser is optically coupled to an astigmatic Herriot gas cell with an optical path length of 76 m. A difference was found in the intensity of selective lines of biomarker molecules in the spectra of exhaled air of healthy volunteers compared to similar indicators of volunteers suffering from a certain disease. For an example of methods such as the support vector machine (SVM), the k-nearest neighbors (k-NN) and the random forest algorithm (Random Forest), the possibility of classifying volunteers by the infrared spectra of their exhaled air is shown. In terms of the accuracy metric, the accuracy of disease classification improved to 98% by the use of dimensionality reduction techniques (PCA and t-SNE). Keywords: infrared spectroscopy, quantum-cascade laser, diagnostics, exhaled air, type 1 diabetes, pneumonia, chronic disease, machine learning. DOI: 10.61011/EOS.2023.06.56666.109-23
  1. T. Grant, E. Croce, E.C. Matsui. Annals of Allergy, Asthma \& Immunology, 128 (1), 5(2022). DOI: 10.1016/j.anai.2021.10.002
  2. E. Uphoff, B. Cabieses, M. Pinart, M. Vald?s, J.M. Anto, J. Wright. Eur. Respir. J., 46 (2), 364(2015). DOI: 10.1183/09031936.00114514
  3. I.I. Dedov, M.V. Shestakova, A.Yu. Mayorov, O.K. Vikulova, G.R. Galstyan, T.L. Kuraeva, E.A. Shestakova, Algoritmy spetsializirovannoy meditsinskoy pomoschi bolnym sakharnum diabetom, Ed. I.I. Dedov, E.A. Shestakova, A.Yu. Mayorov, 9-y vypusk Sakharny diabet, 22 (1S1), 1-144 (2019) (in Russian). DOI: 10.14341/DM221S1
  4. B. de Lacy Costello, A. Amann, H. Al-Kateb, C. Flynn, W. Filipiak, T. Khalid, D. Osborne, N. M. Ratcliffe. J. Breath Res., 8 (1), 014001 (2014). DOI: 10.1088/1752-7155/8/1/014001
  5. A. Bajtarevic, C. Ager, M. Pienz, M. Klieber, K. Schwarz, M. Ligor, A. Amann. BMC cancer., 9(1), 1(2009)
  6. R.H. Eckel, S.M. Grundy, P.Z. Zimmet. The Lancet, 365 (9468), 1415 (2005). DOI: 10.1016/S0140-6736(05)66378-7
  7. P.R. Galassetti, B. Novak, D. Nemet, C. Rose-Gottron, D.M. Cooper, S. Meinardi, D.R. Blake. Diabetes. Technol. Ther., 7(1), 115(2005)
  8. I. Ueta, Y. Saito, M. Hosoe, M. Okamoto, H. Ohkita, S. Shirai, H. Tamura, K. Jinno. Chromatogr. B, 877 (24), 2551 (2009). DOI: 10.1016/j.jchromb.2009.06.039
  9. M. P. Kalapos. Med. Hypotheses, 53 (3), 236(1999)
  10. A.K. Mork, G. Johanson. Toxicol. Lett., 164 (1), 6(2006)
  11. S.K. Kundu, J.A. Bruzek, R. Nair, A.M. Judilla. Clinic. Chem., 39 (1), 87 (1993)
  12. V.M. Ganuzin, N.L. Chernaya, G.S. Maskova, Doktor. Ru, 19 (3), 57 (2020) (in Russian). DOI:10.31550/1727-2378-2020-19-3-57-60
  13. P.V. Berezhanskij, T.A. Gutyrchik, Y.V. Vekshina, N.A. Gutyrchik, N.A. Shapiev, T.I. Ushina. Med. Pharm. J. "Pulse", 24(11), 101(2022). DOI: 10.26787/nydha-2686-6838-2022-24-11-101-107
  14. Y. Ohara, T. Ohara, K. Hashimoto, M. Hosoya. J. Med. Sci., 66(2), 78 (2020). DOI: 10.5387/fms.2019-02
  15. S.A. Kharitonov, D. Yates, R.A. Robbins, P.J. Barnes, R. Logan-Sinclair, E.A. Shinebourne. The Lancet, 343 (8890), 133 (1994). DOI: 10.1016/S0140-6736(94)90931-8
  16. P.E. Silkoff, P. McClean, M. Spino, L.A. Erlich, A.S. Slutsky, N. Zamel. Chest, 119 (5), 1322 (2001). DOI: 10.1378/chest.119.5.1322
  17. S. Svensson, A. Olin, M. Larstad, G. Ljungkvist, K. Toren. J. Chromat. B, 809(2), 199 (2004). DOI: 10.1016/j.jchromb.2004.06.027
  18. J.K. Schubert, W.P.E. Muller, A. Benzing, K. Geiger. Intensive Care Med., 24(5), 415 (1998). DOI: 10.1007/s001340050589
  19. A. Reyes-Reyes, R.C. Horsten, H.P. Urbach, N. Bhattacharya. Analytical Chem., 87(1), 507 (2015). DOI: 10.1021/ac504235e
  20. L. Richard, D. Romanini, I. Ventrillard. Sensors, 18(7), 1997 (2018). DOI: 10.3390/s18071997
  21. I. Kononenko. Art. Intell. Med., 23(1), 89 (2001). DOI: 10.1016/S0933-3657(01)00077-X
  22. M. Shehab, L. Abualigah, Q. Shambour, M.A. Abu-Hashem, M.K.Y. Shambour, A.I. Alsalibi, A.H. Gandomi. Comp. Biol. Med., 145, 105458 (2022). DOI: 10.1016/j.compbiomed.2022.105458
  23. M. Gharaibeh, D. Alzu'bi, M. Abdullah, I. Hmeidi, M.R. Al Nasar, L. Abualigah, A.H. Gandomi. Big Data Cogn. Comp., 6(1), 29 (2022). DOI: 10.3390/bdcc6010029
  24. M. Li, Z.H. Zhou. IEEE Transactions on Systems, Man, and Cybernetics Part A, 37 (6), 1088 (2007). DOI: 10.1109/TSMCA.2007.904745
  25. A. Choudhury, D. Gupta. In Recent developments in machine learning and data analytics (Springer, Singapore, 2019). V. 67. DOI: 10.1007/978-981-13-1280-9_6
  26. A.V. Borisov, A.G. Syrkina, D.A. Kuzmin, V.V. Ryabov, A.A. Boyko, O. Zaharova, V.S. Zasedatel, Y.V. Kistenev, J. Breath Res., 15, 027104 (2021). DOI:10.1088/1752-7163/abebd4
  27. A. Kaplan, H. Cao, J. M. FitzGerald, N. Iannotti, E. Yang, J.W.H. Kocks, K. Kostikas, D. Price, H.K. Reddel, I. Tsiligianni, C.F. Vogelmeier, P. Pfister, P. Mastoridis/ J/ Allergy Clinic. Immunol. Pract., 9, 2255 (2021). DOI: 10.1016/j.jaip.2021.02.014
  28. Y.V. Kistenev, A.V. Borisov, D.A. Kuzmin, O.V. Penkova, N. Kostyukova, A.A. Karapuzikov. J. Biomed. Opt., 22 (1), 017002 (2017). DOI: 10.1117/1.jbo.22.1.017002
  29. I.L. Fufurin, D.R. Anfimov, E.R. Kareva, A.V. Scherbakova, P.P. Demkin, A.N. Morozov, I.S. Golyak. Opt. Engin., 60 (8), 082016 (2021). DOI: 10.1117/1.OE.60.8.082016
  30. I.S. Golyak, E.R. Kareva, I.L. Fufurin, D. R. Anfimov, A.V. Scherbakova, A.O. Nebritova, P.P. Demkin, A.N. Morozov. Comp. Opt., 46 (4), 650 (2022). DOI: 10.18287/2412-6179-CO-1058
  31. I.L. Fufurin, P.V. Berezhanskiy, I.S. Golyak, D.R. Anfimov, E.R. Kareva, A.V. Scherbakova, P.P. Demkin, O.A. Nebritova, A. Morozov. Materials, 15 (9), 2984(2022). DOI: 10.3390/ma15092984
  32. I.S. Golyak, I.L. Fufurin, E.R. Kareva, D.R. Anfimov, A.V. Scherbakova, A.N. Morozov, P.P. Demkin. In Saratov Fall Meeting 2020: Optical and Nanotechnologies for Biology and Medicine. Proc. SPIE. 11845, 169 (2021) DOI: https://doi.org/10.1117/12.2590835
  33. NIST Chemistry WebBook [Electronic source]. URL: https://webbook.nist.gov/chemistry/
  34. S.E. Maxwell, H.D. Delaney, K. Kelley. Designing Experiments and Analyzing Data. A Model Comparison Perspective (Routledge, New York, 2017). DOI: 10.2307/2532173

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru