Transformations of photoluminescence spectra of upconversion nanophosphors by phantoms of biological tissues
Trifanova E.M.1, Nikolaeva M.E.2, Sviridov A.P.1, Popovy V.K.1
1Institute of Photonic Technologies (IPT), Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Moscow, Russia
2Moscow Pedagogical State University, Moscow, Russia
Email: em.trifanova@gmail.com, mesarycheva@gmail.com, sviridov@laser.ru, popov@laser.ru.

PDF
Phantoms are often used to imitate biological tissues in laboratory conditions. Phantoms are usually made on the basis of natural and synthetic materials, as well as hydrogels and various bioactive compositions. Today to visualize biological tissues and study the processes occurring to them in in vitro and in vivo researches in real time, upconversion nanophosphors (UCNPs) are actively used. They have a whole set of unique photoluminescent properties and are promising components of modern tools for non-invasive optical diagnostics of the human and animals body. We have carried out the synthesis and complex characterization of β-NaYF4:Yb3+:Er3+/NaYF4 nanoparticles, which effectively convert radiation from the near-IR range into the visible region of the spectrum. The process has been developed to encapsulate them into the structure of aliphatic polyesters and to form bioresorbable polylactoglycolide scaffolds by anti-solvent 3D printing. We formed two types of tissue phantoms based on agarose, ultra-pasteurized cow's milk and melanin. Characterization and analysis of their optical properties were carried out. We studied the transformations of the photoluminescence spectrum of the synthesized UCNPs during the passage of their radiation through these phantoms, and performed the visualization of the photoluminescent polyester matrices placed in them. Keywords: upconversion nanophosphors, photoluminescence, luminescence imaging, biological tissue phantoms, agarose, melanin, aliphatic polyesters. DOI: 10.61011/EOS.2023.06.56661.124-23
  1. L. Cheng, K. Yang, S. Zhang, M. Shao, S. Lee, Z. Liu. Nano Res., 3 (10), 722 (2010). DOI: 10.1007/s12274-010-0036-2
  2. J. Zhou, Z. Liu, F. Li. Chem. Soc. Rev., 41 (3), 1323 (2012). DOI: 10.1039/C1CS15187H
  3. E.M. Trifanova, M.E. Nikolaeva, V.K. Popov, Perspektivnye materialy, 12, 40 (2021) (in Russian). DOI: 10.30791/1028-978X-2021-12-40-50
  4. E. Hemmer, N. Venkatachalam, H. Hyodo, A. Hattori, Y. Ebina, H. Kishimoto, K. Soga. Nanoscale, 5 (23), 11339 (2013). DOI: 10.1039/c3nr02286b
  5. L. Bachmann, D.M. Zezell, A. da C. Ribeiro, L. Gomes, A.S. Ito. Appl. Spectrosc. Rev., 41 (6), 575 (2006). DOI: 10.1080/05704920600929498
  6. Laser-induced interstitial thermotherapy, ed. by A. Roggan, G. Muller (SPIE Press, Bellingham, WA, 1995), p. 10-44
  7. M. Lualdi, A. Colombo, A. Mari, S. Tomatis, R. Marchesini. J. Laser Appl., 14 (2), 122 (2002). DOI: 10.2351/1.1475339
  8. C. Ianniello, J.A. de Zwart, Q. Duan, C.M. Deniz, L. Alon, J.S. Lee, R. Lattanzi, R. Brown. Magn. Reson. Med., 80 (1), 413 (2018). DOI: 10.1002/mrm.27005
  9. B.L. Oliveira, D. OLoughlin, M. OHalloran, E. Porter, M. Glavin, E. Jones. Biomed. Phys. Eng. Express, 4 (2), (2018). DOI: 10.1088/2057-1976/aaaaff
  10. K. Zell, J.I. Sperl, M.W. Vogel, R. Niessner, C. Haisch. Phys. Med. Biol., 52 (20), 475 (2007). DOI: 10.1088/0031-91.55/52/20/N02
  11. A.V Kondyurin, A.P. Sviridov. Quantum Electron., 38 (7), 641 (2008)
  12. B.W. Pogue, M.S. Patterson. J. Biomed. Opt., 11 (4), 041102 (2006). DOI: 10.1117/1.2335429
  13. Handbook of Optical Biomedical Diagnostics, ed. by V.V. Tuchin (SPIE Press, Bellingham, WA, 2002), ch. 5, p. 311-354
  14. E. Amidi, G. Yang, K.M.S. Uddin, R. Wahidi, Q. Zhu. In: Photons Plus Ultrasound: Imaging and Sensing 2019, ed. by A.A. Oraevsky, L.V. Wang (SPIE Press, San Francisco, CA, 2019), p. 157. DOI: 10.1117/12.2507938
  15. E. Maneas, W. Xia, O. Ogunlade, M. Fonseca, D.I. Nikitichev, A.L. David, S.J. West, S. Ourselin, J.C. Hebden, T. Vercauteren, A.E. Desjardins. Biomed. Opt. Express, 9 (3), 1151 (2018). DOI: 10.1364/boe.9.001151
  16. S. Mosca, P. Lanka, N. Stone, S. Konugolu Venkata Sekar, P. Matousek, G. Valentini, A. Pifferi. Biomed. Opt. Express, 11 (3), 1697 (2020). DOI: 10.1364/boe.386349
  17. M.Z. Vardaki, N. Kourkoumelis. Biomed. Eng. Comput. Biol., 11, 117959722094810 (2020). DOI: 10.1177/1179597220948100
  18. T. Moffitt, Y.-C. Chen, S.A. Prahl. J. Biomed. Opt., 11 (4), 041103 (2006). DOI: 10.1117/1.2240972
  19. S.K.V. Sekar, A. Pacheco, P. Martella, H. Li, P. Lanka, A. Pifferi, S. Andersson-Engels. Biomed. Opt. Express, 10 (4), 2090 (2019). DOI: 10.1364/BOE.10.002090
  20. S.K.V. Sekar, A. Pacheco, P. Martella, H. Li, P. Lanka, A. Pifferi, S. Andersson-Engels. In: European Conference on Biomedical Optics, ed. by H. Dehghani, H. Wabnitz (Optica Publishing Group, 2019), p. 11074_46. DOI: 10.1117/12.2526867
  21. E. Dong, Z. Zhao, M. Wang, Y. Xie, S. Li, P. Shao, L. Cheng, R.X. Xu. J. Biomed. Opt., 20 (12), 121311 (2015). DOI: 10.1117/1.JBO.20.12.121311
  22. A. Mustari, I. Nishidate, M.A. Wares, T. Maeda, S. Kawauchi, S. Sato, M. Sato, Y. Aizu. J. Vis. Exp., 2018 (138), (2018). DOI: 10.3791/57578
  23. P. Lai, X. Xu, L.V. Wang. J. Biomed. Opt., 19 (3), 035002 (2014). DOI: 10.1117/1.JBO.19.3.035002
  24. D.A. Loginova, E.A. Sergeeva, A.D. Krainov, P.D. Agrba, M.Y. Kirillin. Quantum Electron., 46 (6), 528 (2016). DOI: 10.1070/QEL16133
  25. G.M. Spirou, A.A. Oraevsky, I.A. Vitkin, W.M. Whelan. Phys. Med. Biol., 50 (14), 141 (2005). DOI: 10.1088/0031-9155/50/14/N01
  26. J. Sun, K. Fu, M.-Q. Zhu, L. Bickford, E. Post, R. Drezek. Curr. Nanosci., 5 (2), 160 (2009). DOI: 10.2174/157341309788185433
  27. J.R. Cook, R.R. Bouchard, S.Y. Emelianov. Biomed. Opt. Express, 2 (11), 3193 (2011). DOI: 10.1364/boe.2.003193
  28. C. Fajardo, E. Solarte. J. Phys. Conf. Ser., 1547 (1), 012026 (2020). DOI: 10.1088/1742-6596/1547/1/012026
  29. G. Zonios, J. Bykowski, N. Kollias. J. Invest. Dermatol., 117 (6), 1452 (2001)
  30. P. Di Ninni, F. Martelli, G. Zaccanti. Opt. Express, 18 (26), 26854 (2010). DOI: 10.1364/OE.18.026854
  31. A.V. Mironov, O.A. Mironova, M.A. Syachina, V.K. Popov. Polymer (Guildf), 182 (July), 121845 (2019). DOI: 10.1016/j.polymer.2019.121845
  32. A.P. Sviridov, V.S. Zhigarkov, A.G. Shubny, V.I. Yusupov. Quantum Electronics 50 (1), 81, (2020). DOI: 10.1070/QEL17236
  33. A.N. Generalova, I.K. Kochneva, E.V. Khaydukov, V.A. Semchishen, A.E. Guller, A.V. Nechaev, A.B. Shekhter, V.P. Zubov, A.V. Zvyagin, S.M. Deyev. Nanoscale, 7 (5), 1709 (2015). DOI: 10.1039/C4NR05908E
  34. C.A. Schneider, W.S. Rasband, K.W. Eliceiri. Nat. Methods, 9 (7), 671 (2012). DOI: 10.1038/nmeth.2089
  35. V.V. Tuchin. Optika biologicheskikh tkanei. Metody rasseyaniya sveta v meditsinskoy diagnostike (FIZMATLIT, Moscow, 2012), p. 275 -390 (in Russian)
  36. G. Mie. Ann. Phys., 331 (8), 597 (1908)
  37. N. Bogdan, F. Vetrone, G.A. Ozin, J.A. Capobianco. Nano Lett., 11 (2), 835 (2011). DOI: 10.1021/nl1041929

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru