Optical properties of van der Waals heterostructures based on 2D monolayers of borophene, gallium nitride, and zinc oxide
Slepchenkov M. M. 1, Kolosov D. A. 1, Glukhova O.E. 1
1Saratov State University, Saratov, Russia
Email: slepchenkovm@mail.ru, kolosovda@bk.ru, glukhovaoe@info.sgu.ru

PDF
In this paper, we consider two new atomic models of van der Waals vertical heterostructures of metal-semiconductor type based on a 2D buckled triangular borophene with metallic conductivity and graphene-like 2D monolayers of gallium nitride GaN and zinc oxide ZnO, which are semiconductors. Using the density functional theory, the equilibrium configurations of supercells of the borophene/GaN and borophene/ZnO heterostructures are found and their thermodynamic stability at room temperature is shown. Within the framework of the nonstationary first-order perturbation theory, the optical characteristics (complex permittivity and absorption coefficient) are calculated in the electromagnetic radiation wavelength range of 0.2-2 μmm. The presence of anisotropy in the optical properties of the borophene/GaN and borophene/ZnO heterostructures is established when the direction of light polarization is chosen. This is due to different manifestations of the optical properties of the constituent monolayers of the heterostructure. When light is polarized in the direction of the zigzag edge of the GaN/ZnO (along the X axis), the optical properties of GaN and ZnO semiconductor monolayers are predominantly manifested. When light is polarized in the direction of the zigzag edge of the borophene monolayer (along the Y axis), the optical properties of borophene manifest themselves. A synergistic effect has been found from the combination of borophene and ZnO monolayers in the composition of the borophene/ZnO vertical heterostructure, which manifests itself in the form of a section of the increasing plot of the real and imaginary parts of the complex permittivity in the infrared region for both directions of light polarization. It is shown that the difference in the values of the absorption coefficient of the borophene/GaN heterostructure between the UV and visible ranges can reach 7 times, between the UV and near IR ranges - 14 times, and for the borophene/ZnO heterostructure this difference can be up to 6 times and up to 18 times, respectively. It is predicted that borophene/GaN and borophene/ZnO heterostructures can be used to create UV radiation detectors. Keywords: van der Waals vertical heterostructures, complex permittivity, absorption coefficient, anisotropy of optical properties. DOI: 10.61011/EOS.2023.06.56658.115-23
  1. A.K. Geim, I.V. Grigorieva. Nature, 499, 419 (2013). DOI: 10.1038/nature12385
  2. K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H. Castro Neto. Science, 353, aac9439 (2016). DOI: 10.1126/science.aac94
  3. J. Yao, G. Yanga. J. Appl. Phys., 131, 161101 (2022). DOI: 10.1063/5.0087503
  4. L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M.I. Katsnelson, L. Eaves, S.V. Morozov, N.M. Peres, J. Leist, A.K. Geim, K.S. Novoselov, L.A. Ponomarenko. Science, 335, 947 (2012). DOI: 10.1126/science.1218461
  5. C.C. Chen, Z. Li, L. Shi, S.B. Cronin. Nano Res., 8, 666 (2015). DOI: 10.1007/s12274-014-0550-8
  6. C.E. Ekuma, S. Najmaei. ACS Appl. Nano Mater., 3, 7136 (2020). DOI: 10.1021/acsanm.0c01465
  7. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, Y.H. Lee. Mater. Today, 20, 116 (2017). DOI: 10.1016/j.mattod.2016.10.002
  8. Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng, N. Liu, L. Li, Z. Zou, X. Jiang, T. Zhai, Y. Gao. Adv. Electron. Mater., 3, 1700165 (2017). DOI: 10.1002/aelm.201700165
  9. X. Kong, Q. Liu, C. Zhang, Z. Peng, Q. Chen. Chem. Soc. Rev., 46, 2127 (2017). DOI: 10.1039/C6CS00937A
  10. Y. Liu, N.O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, X. Duan. Nat. Rev. Mater., 1, 16042 (2016). DOI: 10.1038/natrevmats.2016.42
  11. X. Zhou, X. Hu, J. Yu, S. Liu, Z. Shu, Q. Zhang, H. Li, Y. Ma, H. Xu, T. Zhai. Adv. Funct. Mater., 28, 1706587 (2018). DOI: 10.1002/adfm.201706587
  12. S. Liang, B. Cheng, X. Cui, F. Miao. Adv. Mater., 32, 1903800 (2019). DOI: 10.1002/adma.201903800
  13. M.Z. Bellus, M. Li, S.D. Lane, F. Ceballos, Q. Cui, X.C. Zeng, H. Zhao. Nanoscale Horiz., 2, 31 (2017). DOI: 10.1039/C6NH00144K
  14. X. Hong, J. Kim, S.-F. Shi, Y. Zhang, C. Jin, Y. Sun, S. Tongay, J. Wu, Y. Zhang, F. Wang. Nature Nanotech., 9, 682 (2014). DOI: 10.1038/nnano.2014.167
  15. K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H.J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, N. Dai. ACS Nano, 10, 3852 (2016). DOI: 10.1021/acsnano.6b00980
  16. Y. Zou, Y. Zhang, Y. Hu, H. Gu. Sensors, 18, 2072 (2018). DOI: 10.3390/s18072072
  17. L. Peng, Y. Cui, L. Sun, J. Du, S. Wang, S. Zhang, Y. Huang. Nanoscale Horiz., 4, 480 (2019). DOI: 10.1039/C8NH00413G
  18. W.X. Zhang, Y. Yina, C. He. Phys. Chem. Chem. Phys., 22, 26231 (2020). DOI: 10.1039/D0CP04474A
  19. Y. Zhu, K. Liu, Q. Ai, Q. Hou, X. Chen, Z. Zhang, X. Xie, B. Lia, D. Shen. J. Mater. Chem. C, 8, 2719 (2020). DOI: 10.1039/C9TC06416H
  20. Z. Liu, X. Wang, Y. Liu, D. Guo, S. Li, Z. Yan, C.-K. Tan, W. Li, P. Li, W. Tang. J. Mater. Chem. C, 7, 13920 (2019). DOI: 10.1039/C9TC04912F
  21. L. Yu, Y.H. Lee, X. Ling, E.J. Santos, Y.C. Shin, Y. Lin, M. Dubey, E. Kaxiras, J. Kong, H. Wang, T. Palacios. Nano Lett., 14, 3055 (2014). DOI: 10.1021/nl404795z
  22. K. Zhang, T. Zhang, G. Cheng, T. Li, S. Wang, W. Wei, X. Zhou, W. Yu, Y. Sun, P. Wang, D. Zhang, C. Zeng, X. Wang, W. Hu, H.J. Fan, G. Shen, X. Chen, X. Duan, K. Chang, N. Dai. ACS Nano, 10, 3852 (2016). DOI: 10.1021/acsnano.6b00980
  23. S. Kaur, A. Kumar, S. Srivastava, K. Tankeshwar. Phys. Chem. Chem. Phys., 19, 22023 (2017). DOI: 10.1039/C7CP03960C
  24. A.J. Mannix, X.-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, N.P. Guisinger. Science, 350, 1513 (2015). DOI: 10.1126/science.aad1080
  25. N. Katoch, A. Kumar, R. Sharma, P.K. Ahluwalia, J. Kumar. Phys. E: Low-Dimens. Syst. Nanostructures, 2020, 120, 113842. DOI: 10.1016/j.physe.2019.113842
  26. S. Jing, W. Chen, J. Pan, W. Li, B. Bian, B. Liao, G. Wang. Mater. Sci. Semicond. Process., 146, 106673 (2022). DOI: 10.1016/j.mssp.2022.106673
  27. J.W. Jiang, X.C. Wang, Y. Song, W.B. Mi. Appl. Surf. Sci., 440, 42 (2018). DOI: 10.1016/j.apsusc.2018.01.140
  28. J.M. Soler, E. Artacho, J.D. Gale, A. Garci a, J. Junquera, P. Ordejon, D. Sanchez-Portal. J. Phys.: Condens. Matt., 14, 2745 (2002). DOI: 10.1088/0953-8984/14/11/302
  29. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B, 46, 6671 (1992). DOI: 10.1103/PhysRevB.46.6671
  30. S. Grimme. J. Comput. Chem., 27, 1787 (2006). DOI: 10.1002/jcc.20495
  31. H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, 5188 (1976). DOI: 10.1103/PhysRevB.13.5188
  32. P. Pulay. Chem. Phys. Lett. 73, 393 (1980). DOI: 10.1016/0009-2614(80)80396-4
  33. E.N. Economou. Green's Functions in Quantum Physics, 3rd ed. (Springer, Berlin, 1983), p. 55-75. DOI: 10.1007/3-540-28841-4_4
  34. The Materials Project. [Electronic source]. URL: https://materialsproject.org/
  35. Z. Deng, X. Wang, J. Cui. RSC Adv., 9, 13418 (2019). DOI: 10.1039/C9RA01576K
  36. J. Wu, M. Gong. J. Appl. Phys., 130, 070905 (2021). DOI: 10.1063/5.0060255
  37. Z. Luo, X. Fan, Y. An. Nanoscale Res. Lett., 12, 514 (2017). DOI: 10.1186/s11671-017-2282-7
  38. Z. Zhang, E.S. Penev, B.I. Yakobson. Chem. Soc. Rev., 46, 6746 (2017). DOI: 10.1039/C7CS00261K
  39. M. Idrees, C.V. Nguyen, H.D. Bui, I. Ahmad, B. Amin. Phys. Chem. Chem. Phys., 22, 20704 (2020). DOI: 10.1039/D0CP03434G
  40. X. Gao, Y. Shen, Y. Ma, S. Wu, Z. Zhou. J. Mater. Chem. C, 7, 4791 (2019). DOI: 10.1039/C9TC00423H
  41. H. Xiang, H. Quan, Y. Hu, W. Zhao. J. Inorg. Mater., 36, 492 (2021). DOI: 10.15541/jim20200346
  42. K. Ren, J. Yu, W. Tang. J. Alloys Compd., 812, 152049 (2020). DOI: 10.1016/j.jallcom.2019.152049
  43. S. Xia, Y. Diao, C. Kan. J. Colloid Interface Sci., 607, 913 (2022). DOI: 10.1016/j.jcis.2021.09.050
  44. G. Wang, W. Tang, L. Geng, Y. Li, B. Wang, J. Chang, H. Yuan. Phys. Status Solidi B, 257, 1900663 (2019). DOI: 10.1002/pssb.201900663
  45. Y. Zhang, M. Zhang, Y. Zhou, J. Zhao, S. Fang, F. Li. J. Mater. Chem. A, 2, 13129 (2014). DOI: 10.1039/C4TA01874E

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru