Effect of the central ion of metals on the luminescent and photophysical parameters of metallophthalocyanines
Starukhin A.S. 1, Ramanenka A. A. 1, Ilin A.Yu. 1, Shershan V.S.1, Pavich T. A.1, Savostianov A. O. 2,3,4, Eremchev I. Yu. 2,3,4, Naumov A. V. 2,3,4
1B.I.Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus
2Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow, Russia
3Lebedev Physical Institute of the Russian Academy of Sciences, Troitsk Branch, Moscow, Troitsk, Russia
4Moscow Pedagogical State University, Moscow, Russia
Email: a.starukhin@ifanbel.bas-net.by, savostianov.a.@isan.troitsk.ru, a_v_naumov@mail.ru

PDF
Based on the data on the spectral and photophysical parameters of the metal complexes of tetraazaporphyrins and phthalocyanines, the effect of the central metal ion on the manifestation of spin-orbit interaction is considered. For complexes of phthalocyanines with Mg(II), Zn(II), Pd(II), and Pt(II) ions, the absorption spectra, luminescence spectra, and luminescence excitation spectra were measured, and the lifetimes and quantum yields of luminescence were determined. It was shown that metal phthalocyanines with Mg(II) and Zn(II) ions, as well as Mg-tetaraazaporphyrin, exhibit intense fluorescence with high quantum yields. For single molecules of Mg-tetaraazaporphyrin in a polymer film at T=6 K, the fluorescence excitation spectra consisting both exclusively of zero-phonon lines and containing phonon wings were measured. A wide distribution of the measured zero-phonon line widths was observed. It is demonstrated, that the introduction of Pd(II) and Pt(II) ions into the center of phthalocyanine macrocycles leads to a decrease in fluorescence and the appearance of intense phosphorescence even at room temperature. Based on measurements of quantum yields of photosensitized generation of singlet molecular oxygen, the quantum yield of interconversion into triplet states for the compounds under study was defined. Deactivation of the lower triplet state of phthalocyanines with Pd(II) and Pt(II) ions indicates the influence of the internal heavy atom effect on the rate of triplet state deactivation at room temperature and at 77 K. Keywords: phthalocyanines with Mg(II), Zn(II), Pd(II) and Pt(II) ions, Mg-tetaraazaporphyrin, single molecule luminescence, photophysical parameters of singlet and triplet state deactivation, quantum yield of singlet oxygen generation. DOI: 10.61011/EOS.2023.04.56360.79-22
  1. J.W. Namgoong, H.M. Kim, S.H. Kim, S.B. Y.J. Choi, J.P. Kim. DyesPigm., 184, 108737 (2021). DOI: 10.1016/j.dyepig.2020.108737
  2. H.Y. Yenilmez, A.N. Sahin, A. Ali ndal, Z.A. Bayi r. Synth. Met., 273, 116690 (2021). DOI: 10.1016/j.synthmet.2020.116690/
  3. A. Capki n, M. Piskin, M. Durmus, M. Bulut. J. Mol. Struct., 1213, 128145 (2020) DOI: 10.1016/j.molstruc.2020.128145
  4. D. Wohrle, G. Schnurpfeil, S.G. Makarov, A. Kazarin, O.N. Suvorova. Macroheterocycles, 5 (3), 191 (2012). DOI: 10.6060/mhc2012.120990w
  5. 0.S. De, T. Devic, A. Fateeva. Dalton Trans., 50, 1166 (2021). DOI: 10.1039/D0DT03903A
  6. R.R. Cranston, B.H. Lessard. RSC Adv., 11, 21716 (2021). DOI: 10.1039/D1RA03853B
  7. M. Wainwright. Color. Technol., 126, 115 (2010). DOI: 10.1111/j.1478-4408.2010.00244.x
  8. S. Gorduk, A. Altindal. J. Mol. Struct., 1196, 747 (2019). DOI: 10.1016/j.molstruc.2019.07.027
  9. M. Gallardo-Villagran, D. Y. Leger, B. Liagre, B. Therrien. J. Mol. Sci., 20, 3339 (2019). DOI: 10.3390/ijms20133339
  10. U. Demirbas, M. Pis, R. Bayrak, M. Durmus, H. Kantekin. J. Mol. Struct., 1197, 594 (2019). DOI: 10.1016/j.molstruc.2019.07.091
  11. A.O. Savostianov, I.Y. Eremchev, A.A. Gorshelev, A.V. Naumov, A.S. Starukhin. JETP Letters, 107 (7), 406 (2018). DOI: 10.1134/S002136401807007X
  12. A.O. Savostianov, I.Y. Eremchev, A.A. Gorshelev, S.V. Orlov, A.S. Starukhin, A.V. Naumov. Opt. Spectrosc., 126 (1), 44 (2019). DOI: 10.1134/S0030400X19010156
  13. L. Fleury, A. Zumbusch, M. Orrit, R. Brown, J. Bernard. J. Lumin., 56 (1-6), 15 (1993). DOI: 10.1016/0022-2313(93)90049-S
  14. Y. Durand, A. Bloeb, J. Kohler, E.J. Groenen, J. Schmidt. J. Chem. Phys., 114 (15), 6843 (2001). DOI: 10.1063/1.1357803
  15. C. Bradac, T. Gaebel, N. Naidoo, M.J. Sellars, J. Twamley, L.J. Brown, A.S. Barnard, T. Plakhotnik, V. Zvyagin, J.R. Rabeau. Nat. Nanotechnol., 5 (5), 345 (2010). DOI: 10.1038/nnano.2010.56
  16. K.N. Boldyrev, V.S. Sedov, D.E. Vanpoucke, V.G. Ralchenko, B.N. Mavrin. Diam. Relat. Mater., 126, 109049 (2022). DOI: 10.1016/j.diamond.2022.109049
  17. A. Vokhmintsev, I. Weinstein, D. Zamyatin. J. Lumin., 208, 363 (2019). DOI: 10.1016/j.jlumin.2018.12.036
  18. C. Toninelli, I. Gerhardt, A.S. Clark, A. Reserbat-Plantey, S. Gotzinger, Z. Ristanovic, M. Colautti, P. Lombardi, K. D. Major, I. Deperasinska, W.H. Pernice, F.H.L. Koppens, B. Kozankiewicz, A. Gourdon, V. Sandoghdar, M. Orrit. Nat. Mater., 20, 1615 (2021). DOI: 10.1038/s41563-021-00987-4
  19. A.S. Starukhin, A.A. Romanenko, V.Yu. Plavsky. Opt. i spektr., 130 (5), 709 (2022). (in Russian). DOI: 10.61011/EOS.2023.04.56360.79-22
  20. B.M. Dzhagarov, E.I. Sagun, V.A. Ganzha, G.P. Gurinovich. Khimicheskaya Fizika, 6 (7), 919 (1987)
  21. M. DeRosa, R. Crutchley. Coord. Chem. Rev., 233-234, 351 (2002). DOI: 10.1016/S0010-8545(02)00034-6
  22. F. Wilkinson, W. Helman, A. Ross. Phys. Chem. 22 (1), 113 (1993). DOI: 10.1063/1.555965
  23. R.P. Linstead, M. Whalley. J. Chem. Soc., 4839 (1952). DOI: 10.1039/JR9520004839
  24. K. Sakamoto, E. Ohno-Okumura. Materials. 2, 1127 (2009). DOI: 10.3390/ma2031127
  25. J. Alzeer, J. Phillipe, C. Roth, N.W. Luedtke. Chem. Commun., 1970 (2009). DOI: 10.1039/B822985F
  26. R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff // Photochem. Photobiol. A, 79 (1), 11 (1994). DOI: 10.1016/1010-6030(93)03746-4
  27. I.Yu. Eremchev, M.Yu. Eremchev, A.V. Naumov. UFN, 189 (3), 312 (2019). (in Russian). DOI: 10.3367/UFNe.2018.06.038461 [I.Yu. Eremchev, M.Yu. Eremchev, A.V. Naumov. Phys. Usp., 62, 294 (1019). DOI: 10.3367/UFNe.2018.06.038461]
  28. M. Taniguchia, J. Lindsey, D. Bocian, D. Holten. J. Photochem. Photobiol. C, 46 (3), 100401 (2021). DOI: 10.1016/j.jphotochemrev.2020.100401
  29. M. Orrit, J. Bernard. Phys. Rev. Lett., 65, 2716 (1990). DOI:10.1103/PhysRevLett.65.2716
  30. T. Irngartinger, A. Renn, G. Zumofen, U.P. Wild. J. Lumin., 76, 279 (1998). DOI:10.1016/S0022-2313(97)00152-X
  31. A. Starukhin, A. Shulga, J. Sepiol, R. Kolos, V. Knyukshto, A. Renn, U.P. Wild. Chem. Phys., 285 (1), 121 (2002). DOI:10.1016/S0301-0104(02)00694-8
  32. M. Banasiewicz, O. Morawski, D. Wiacek, B. Kozankiewicz. Chem. Phys. Lett., 414 (4-6), 374 (2005). DOI:10.1016/j.cplett.2005.08.120
  33. M. Bialkowska, A. Makarewicz, M. Banasiewicz, B. Kozankiewicz. Chem. Phys. Lett., 555 (3), 131 (2013). DOI: 10.1016/j.cplett.2012.11.001
  34. [A.S. Starukhin, A.V. Gorski, Ya. Z. Dobkovski. Bulletin of the Russian Academy of Sciences: Physics, 84 (3), 267 (2020). DOI: 10.3103/S1062873820030223
  35. P.D. Reilly, J.L. Skinner. Phys. Rev. Lett., 71 (25), 4257 (1993). DOI: 10.1103/PhysRevLett.71.4257
  36. Y.G. Vainer, M.A. Kol'chenko, A.V. Naumov, R.I. Personov, S.J. Zilker. J. Lumin., 86 (3-4), 265 (2000). DOI: 10.1016/S0022-2313(00)00172-1
  37. M. Knyazev, K. Karimullin, A. Naumov. Phys. Status Solidi RRL., 11 (3), 1600414 (2017)
  38. P.P. Navarro. Stable single molecules for quantum optics and all-optical switches. Doctoral Thesis (Leiden University, Leiden, 2014). URL: https://scholarlypublications.universiteitleiden.nl/ handle/1887/29975
  39. B. Kozankiewicz, J. Bernard, M. Orrit. J. Chem. Phys., 101 (11), 9377 (1994). DOI: 10.1063/1.467968
  40. I.S. Osad'ko. UFN, 128, 31 (1979). (in Russian). DOI: 10.3367/UFNr.0128.197905b.0031 [I.S. Osad'ko. Sov. Phys. Usp., 22, 311 (1979). DOI: 10.1070/PU1979v022n05ABEH005496]
  41. I.S. Osad'ko. Quantum Dynamics of Molecules Interacting with Photons, Phonons and Tunnel Systems (Fizmatlit, M., 2017) (in Russian)
  42. A.T. Gradyushko, A.N. Sevchenko, K.N. Solovyov, M.P. Tsvirko. Photochem. Photobiol., 11, 387 (1970). DOI:10.1111/j.1751-1097.1970.tb06011.x
  43. P.S. Vincett, E.M. Voigt, K.E. Rieckhoff. J. Chem. Phys., 55 (8), 4131 (1971). DOI:10.1063/1.1676714
  44. K.N. Solovyov, E.A. Borisevich. UFN, 175 (3), 247 (2005). (in Russian). DOI:10.3367/UFNr.0175.200503b.0247
  45. O.L. Gladkova, A.S. Starukhin, M.M. Kruk. Opt. Spectrosc., 110 (2), 234 (2011). DOI:10.1134/S0030400X1102007X
  46. V.L. Ermolaev, E.B. Sveshnikova. Acta Phys. Pol., 34, 771 (1968)
  47. M. Gouterman, F. Schwarz, P. Smith. J. Chem. Phys., 59 (2), 676 (1973). DOI:10.1063/1.1680075
  48. S. Perun, J. Tatchen, C. Marian. ChemPhysChem, 9, 282 (2008). DOI: 10.1002/cphc.200700509
  49. S.Y. Egorov, A.A. Krasnovskii, I.V. Vychegzhanina, N.N. Drozdova. Doklady Akademii Nauk SSSR, 310 (2), 471 (1990)
  50. C. Grewer, H. Brauer. J. Phys. Chem., 98 (16), 4230 (1994). DOI: 10.1021/j100067a006
  51. E.I. Zen'kevich, E.I. Sagun, V.N. Knyukshto, A.M. Shul'ga, A.F. Mironov, O.A. Efremova, R. Bonnett, M. Kaddem. J. Appl. Spectr., 63 (4), 502 (1996). DOI:10.1007/BF02606894
  52. W. Maes, T. Ngo, G. Rong, A. Starukhin, M. Kruk, W. Dehaen. Eur. J. Org. Chem., 2576 (2010). DOI:10.1002/ejoc.201000180
  53. M.P. Tsvirko, K.N. Solovyov, A.T. Gradyushko, S.S. Dvornikov. Opt. i spektr., 38 (4), 705 (1975). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru