Luminescence of manganese and chromium ions in spinel hosts
Khaidukov N.M. 1, Brekhovskikh M.N. 1, Kirikova N. Yu. 2, Kondratyuk V.A. 2, Makhov V.N. 2
1Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
Email: khaiduk2@gmail.com, mbrekh@igic.ras.ru, kirikovany@lebedev.ru, valentin.kondratuk@mail.ru, makhovvn@lebedev.ru

PDF
Single-phase ceramic samples of MgAl2O4, ZnAl2O4 and LiAl5O8 spinels containing manganese or chromium ions have been synthesized by a high-temperature solid-state reactions method. It has been shown that the luminescence properties of the synthesized phosphors, in particular, the appearance of intense red luminescence from Mn4+ ions, as well as the magnitude of inhomogeneous line broadening in the luminescence spectra of Mn4+ and Cr3+ ions depend on the degree of cation inversion, which provides the charge compensation for stabilizing Mn4+ ions in the octahedral sites of the spinel structures upon the substitution of Al3+ ions, simultaneously resulting in disordered spinel crystal structures. Keywords: spinel, inversion, manganese and chromium ions, red phosphor.
  1. Q. Zhou, L. Dolgov, A.M. Srivastava, L. Zhou, Z. Wang, J. Shi, M.D. Dramicanin, M.G. Brik, M. Wu. J. Mater. Chem. C, 6, 2652 (2018). DOI: 10.1039/c8tc00251g
  2. S. Adachi. J. Lumin., 202, 263 (2018). DOI: 10.1016/j.jlumin.2018.05.053
  3. S. Adachi. ECS J. Solid State Sci. Technol., 9, 016001 (2020). DOI: 10.1149/2.0022001JSS
  4. Y.H. Kim, J. Ha, W.B. Im. J. Materials Research and Technology, 11, 181 (2021). DOI: 10.1016/j.jmrt.2021.01.011
  5. S.J. Dhoble, R. Priya, N.S. Dhoble, O.P. Pandey. J. Lumin., 36, 560 (2021). DOI: 10.1002/bio.3991
  6. M.H. Fang, G.N.A. De Guzman, Z. Bao, N. Majewska, S. Mahlik, M. Grinberg, R.S. Liu. J. Mater. Chem. C, 8, 11013 (2020). DOI: 10.1039/d0tc02705g
  7. Y. Tanabe, S. Sugano. J. Phys. Soc. Jpn., 9, 776 (1954). DOI: 10.1143/JPSJ.9.766
  8. F. Bosi, C. Biagioni, M. Pasero. Eur. J. Mineral., 3, 183 (2019). DOI: 10.1127/ejm/2019/0031-2788
  9. S.P. Feofilov, A.B. Kulinkin, N.M. Khaidukov. J. Lumin., 217, 116824 (2020). DOI: 10.1016/j.jlumin.2019.116824
  10. N.M. Khaidukov, K.S. Nikonov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Inorganic Materials, 58 (7), 751 (2022). DOI: 10.1134/S002016852207010X
  11. N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Russ. J. Inorg. Chem., 65 (8), 1135 (2020). DOI: 10.1134/S0036023620080069
  12. N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Ceram. Int., 46, 21351 (2020). DOI: 10.1016/j.ceramint.2020.05.231
  13. N. Khaidukov, A. Pirri, M. Brekhovskikh, G. Toci, M. Vannini, B. Patrizi, V. Makhov. Materials, 14 (2), 420 (2021). DOI: 10.3390/ma14020420
  14. R.D. Shannon. Acta Cryst. A, 32, 751 (1976). DOI: 10.1107/S0567739476001551
  15. D.L. Wood, G.F. Imbusch, R M. Macfarlane, P. Kisliuk, D.M. Larkin. J. Chem. Phys., 48, 5255 (1968). DOI: 10.1063/1.1668202
  16. K. Momma, F. Izumi. J. Appl. Cryst., 44, 1272 (2011). DOI: 10.1107/S0021889811038970
  17. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K.A. Persson. APL Materials, 1, 011002 (2013). DOI: 10.1063/1.4812323
  18. H.St.C. O'Neill, W.A. Dollase. Phys. Chem. Minerals, 20, 541 (1994). DOI: 10.1007/BF00211850
  19. S. Sugano, Y. Tanabe. J. Phys. Soc. Jpn., 13, 880 (1958). DOI: 10.1143/JPSJ.13.880
  20. R. Famery, F. Queyroux, J.-C. Gilles, P. Herpin. J. Solid State Chem., 30, 257 (1979). DOI: 10.1016/0022-4596(79)90107-5
  21. M. Kriens, G. Adiwidjaja, W. Guse, K.H. Klaska, C. Lathe, H. Saalfeld, N.Jb. Miner. Mh., 8, 344 (1996)
  22. N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. Russ. J. Inorg. Chem., 67 (4), 547 (2022). DOI: 10.1134/S003602362204009X
  23. N.M. Khaidukov, M.N. Brekhovskikh, N.Yu. Kirikova, V.A. Kondratyuk, V.N. Makhov. J. Lumin., 248, 118942 (2022). DOI: 10.1016/j.jlumin.2022.118942
  24. R.K. Datta, R. Roy. J. Am. Ceram. Soc., 46, 388 (1963). DOI: 10.1111/j.1151-2916.1963.tb11757.x
  25. D.E. McCumber, M.D. Sturge. J. Appl. Phys., 34, 1682 (1963). DOI: 10.1063/1.1702657
  26. D.D. Ragan, R. Gustavsen, D. Schiferl. J. Appl.Phys., 72, 5539 (1992). DOI: 10.1063/1.351951
  27. J.T. Karpick, B. Di Bartolo. Nuovo Cimento B, 7 (1), 62 (1972). DOI: 10.1007/BF02827037
  28. A.P. Vink, A. Meijerink. J. Lumin., 87-89, 601 (2000). DOI:10.1016/S0022-2313(99)00308-7
  29. M. Erdem, G. Ozen, U. Yahsi, B. Di Bartolo, J. Lumin. 158, 464 (2015). DOI: 10.1016/j.jlumin.2014.10.053
  30. D.L. Wood, G.F. Imbusch, R.M. Macfarlane, P. Kisliuk, D.M. Larkin. J. Chem. Phys., 48, 5255 (1968). DOI: 10.1063/1.1668202
  31. G.T. Pott, B.D. McNicol. J. Solid State Chem., 7, 132 (1973). DOI: 10.1016/0022-4596(73)90145-X
  32. Y. Tokida, S. Adachi. J. Appl. Phys., 112, 063522 (2012). DOI: 10.1063/1.4754517
  33. T. Abritta, N.T. Melamed, J. Maria Neto, F. De Souza Barros. J. Lumin., 18-19, 179 (1979). DOI: 10.1016/0022-2313(79)90098-X
  34. R.C. Powell, B. Di Bartolo, B. Birang, C.S. Naiman. In: Optical Properties of Ions in Crystals. Ed by H.M. Crosswhite, H.W. Moos (Interscience, New York, 1967), p. 207

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru