Heating of magnetic powders in the ferromagnetic resonance mode at a frequency of 8.9 GHz
Stolyar S. V. 1,2, Li O. A. 1,2, Nikolaeva E. D. 1, Boev N. M. 3,2, Vorotynov A. M. 3, Velikanov D. A. 3, Iskhakov R. S. 3, P'yankov V. F. 1, Knyazev Yu. V. 3, Bayukov O. A. 3, Shokhrina A. O.1,2, Molokeev M. S. 2,3, Vasiliev A. D. 2,3
1Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian State University, Krasnoyarsk, Russia
3Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
Email: stol@iph.krasn.ru, oali@sfu-kras.ru, nikolaeva-lena@mail.ru, boev@iph.krasn.ru, sasa@iph.krasn.ru, dpona1@gmail.com, rauf@iph.krasn.ru, pyankov.vf@ksc.krasn.ru, yuk@iph.krasn.ru, helg@iph.krasn.ru, anna.shohrina152@gmail.com, msmolokeev@sfu-kras.ru, adva@iph.krasn.ru

PDF
Nickel ferrite nanoparticles 4 nm in size were synthesized by chemical deposition. Subsequent annealing at T=700oC for 5 h led to an increase in the particle size to 63 nm. The Mossbauer spectra and the frequency-field dependences of ferromagnetic resonance have been measured. It has been shown that freshly prepared powders are superparamagnetic at room temperature. The kinetic dependences of the heating of nanoparticles in the ferromagnetic resonance mode at a frequency of 8.9 GHz were measured. It was found that the maximum rate of temperature increase in this mode for a ferromagnetic powder is an order of magnitude greater than for the superparamagnetic state (1.2 and 0.13 K/s, respectively). The latter is determined by the saturation magnetization of the studied powders. Keywords: ferromagnetic resonance, superparamagnetic powders, relaxation frequency, frequency-field dependence, heating of powders.
  1. A.S. Kamzin, D.S. Nikam, S.H. Pawar. FTT 59, 1, 149 (2017). (in Russian). 10.21883/ftt.2017.01.43966.185
  2. M. Peiravi, H. Eslami, M. Ansari, H. Zare-Zardini. J. Indian Chem. Soc. 99, 1, 100269 (2022). 10.1016/j.jics.2021.100269
  3. Seongtae Bae, Sang Won Lee, A. Hirukawa, Y. Takemura, Youn Haeng Jo, Sang Geun Lee. IEEE Trans Nanotechnol. 8, 1, 86 (2009). 10.1109/TNANO.2008.2007214
  4. K. Ohara, T. Moriwaki, K. Nakazawa, T. Sakamoto, K. Nii, M. Abe, Y. Ichiyanagi. AIP Adv. 13, 2, 025238 (2023). 10.1063/9.0000477
  5. W. Wu, Z. Wu, T. Yu, C. Jiang, W.-S. Kim. Sci. Technol. Adv. Mater. 16, 2, 023501 (2015). 10.1088/1468-6996/16/2/023501
  6. M. Shen, H. Cai, X. Wang, X. Cao, K. Li, S.H. Wang, R. Guo, L. Zheng, G. Zhang, X. Shi. Nanotechnology 23, 10, 105601 (2012). 10.1088/0957-4484/23/10/105601
  7. J.-H. Lee, Y. Kim, S.-K. Kim. Sci. Rep. 12, 1, 5232 (2022). 10.1038/s41598-022-09159-z
  8. S. Bae, S.W. Lee, Y. Takemura. Appl. Phys. Lett. 89, 25, 252503 (2006). 10.1063/1.2420769
  9. A. Tomitaka, H. Kobayashi, T. Yamada, M. Jeun, S. Bae, Y. Takemura. J. Phys.: Conf. Ser. 200. Institute of Physics Publishing (2010)
  10. E. Umut, M. Coskun, F. Pineider, D. Berti, H. Gungunes. J. Coll. Interface Sci. 550, 199 (2019). 10.1016/j.jcis.2019.04.092
  11. C.E. Demirci Donmez, P.K. Manna, R. Nickel, S. Akturk, J. van Lierop. ACS Appl. Mater. Interfaces 11, 7, 6858 (2019). 10.1021/acsami.8b22600
  12. G. Stefanou, D. Sakellari, K. Simeonidis, T. Kalabaliki, M. Angelakeris, C. Dendrinou-Samara, O. Kalogirou. IEEE Trans. Magn. 50, 12, 1 (2014). 10.1109/TMAG.2014.2345637
  13. O.M. Lemine, N. Madkhali, M. Hjiri, N.A. All, M.S. Aida. Ceram. Int. 46, 18, 28821 (2020). 10.1016/j.ceramint.2020.08.047
  14. A.E. Deatsch, B.A. Evans. J. Magn. Magn. Mater. 354, 163 (2014). 10.1016/j.jmmm.2013.11.006
  15. M.V. Lebedev. Vestn. Permskogo un-ta. Fizika 4, 14 (2021). (in Russian). 10.17072/1994-3598-2021-4-14-20
  16. S.V. Vonsovsky. Ferromagnitnyy rezonans. Yavleniye rezonansnogo pogloshcheniya vysokochastotnogo elektromagnitnogo polya v ferromagnitnykh veshchestvakh. Fiz.-mat. lit., M. (1961). (in Russian)
  17. N. Yoshikawa, T. Kato. J. Phys. 43, 42, 425403 (2010). 10.1088/0022-3727/43/42/425403
  18. S. Krupivcka. Physik der Ferrite und der verwandten magnetischen Oxide. Vieweg+Teubner Verlag, Wiesbaden (1973)
  19. S.V. Stolyar, O.A. Li, E.D. Nikolaeva, A.M. Vorotynov, D.A. Velikanov, Y.V. Knyazev, O.A. Bayukov, R.S. Iskhakov, V.F. Pyankov, M.N. Volochaev. FMM 124, 2, 182 (2023). (In Russian)
  20. P. Hernandez-Gomez, J.M. Munoz, M.A. Valente, C. Torres, C. de Francisco. EPJ Web Conf. 40, 17003 (2013). 10.1051/epjconf/20134017003
  21. M.E. Mata-Zamora, H. Montiel, G. Alvarez, J.M. Saniger, R. Zamorano, R. Valenzuela. J. Magn. Magn. Mater. 316, 2, e532 (2007). 10.1016/j.jmmm.2007.03.011
  22. R. Valenzuela, S. Ammar, F. Herbst, R. Ortega-Zempoalteca. Nanosci. Nanotechnology Lett. 3, 4, 598 (2011). 10.1166/nnl.2011.1207
  23. G.V. Kurlyandskaya, S.M. Bhagat, C. Luna, M. Vazquez. J. Appl. Phys. 99, 10, 104308 (2006). 10.1063/1.2191740
  24. V.V. Srinivasu, S.E. Lofland, S.M. Bhagat, K. Ghosh, S. Tyagi. J. Appl. Phys. 86, 2, 1067 (1999). 10.1063/1.371146
  25. S.V. Stolyar, L.A. Chekanova, R.N. Yaroslavtsev, S.V. Komogortsev, Y.V. Gerasimova, O.A. Bayukov, M.N. Volochaev, R.S. Iskhakov, I.V. Garanzha, O.S. Kolovskaya, M.S. Bairmani, T.N. Zamay. J. Phys. Conf. Ser. 1399, 2, 022026 (2019). 10.1088/1742-6596/1399/2/022026.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru