Magnetic anisotropy of Nanostructured Fe-Ni-C Coating Produced by Electroless Deposition
Denisova E. A.
1,2, Chekanova L. A.
1, Komogortsev S. V.
1,2,3, Iskhakov R. S.
1,3, Li O. A.
2, Sukhachev А. L.
1, Velikanov D. A.
1, Nemtsev I. V.
1,2,41Kirensky Institute of Physics, Federal Research Center KSC SB, Russian Academy of Sciences, Krasnoyarsk, Russia
2Siberian Federal University, Krasnoyarsk, Russia
3Siberian State University of Science and Technology, Krasnoyarsk, Russia
4Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
Email: len-den@iph.krasn.ru, chekanova-lida@mail.ru, komogor@iph.krasn.ru, rauf@iph.krasn.ru, oksana.anatolievna.li@gmail.com, sunya@iph.krasn.ru, dpona1@gmail.com, ivan_nemtsev@mail.ru
The structural and magnetic properties of nanostructured Fe100-xNix-C (0<x<100) coatings produced by electroless plating with different carbohydrates as reducing agents have been investigated. The phase-structural state of the films was studied by diffraction and electron microscopy. The Ni concentration ranges of FCC and BCC phases existence in electroless deposited films were determined. The surface morphology, saturation magnetization, local magnetic anisotropy field and coercivities of films are dependent on the iron content and type of reducing agent. The correlation between coercivity Hc and the anisotropy field of the magnetic stochastic domain which were established by correlation magnetometry suggests that the magnitude of Hc is mainly determined by this anisotropy. Keywords: 3d-metal alloys, the approach to saturation magnetization law, coercivity.
- T. Yamamoto, T. Nagayama, T. Nakamura. J. Electrochem. Soc. 166, 1, D3228 (2019)
- M. Theis, S. Ediger, M.T. Schmitt, J.-E. Hoffmann, M. Saumer. Phys. Status Solidi A 210, 5, 853 (2013)
- A.V. Svalov, A.V. Arkhipov, V.N. Lepalovskii, E.A. Stepanova, V.O. Vas'kovskii, G.V. Kurlyandskaya. Phys. Solid State 63, 10, 1553 (2021)
- H.L. Seet, X.P. Li, Z.J. Zhao, Y.K. Kong, H.M. Zheng, W.C. Ng. J. Appl. Phys. 97, 10, 10N304 (2005)
- Z. Zhu, H. Feng, X. Cheng, H. Xie, Q. Liu, J. Wang. J. Phys. D 51, 4, 045004 (2018)
- T. Yanai, R. Tanaka, R. Ueno, K. Mieda, J. Kaji, T. Morimura, A. Yamashita, M. Nakano, H. Fukunaga. AIP Advances 10, 1, 015047 (2020)
- B.G. Sukhov, G.P. Aleksandrova, L.A. Grishchenko, L.P. Feoktistova, A.N. Sapozhnikov, O.A. Proydakova, A.V. T'kov, S.A. Medvedeva, B.A. Trofimov. Zhurn. strukturn. khimii 48, 5, 979 (2007). (in Russian)
- M. Darques, A. Encinas, L. Vila, L. Piraux. J. Phys. D 37, 10, 1411 (2004)
- G. Herzer. Acta Materialia 61, 3, 718 (2013)
- V.A. Ignatchenko, R.S. lskhakov. JETP 45, 3, 1005 (1977)
- E.M. Chudnovsky, W.M. Saslow, R.A. Serota. Phys. Rev. B 33, 1, 251 (1986)
- R.S. Iskhakov, V.A. Ignatchenko, S.V. Komogortsev, A.D. Balaev. JETP Lett. 78, 10, 646 (2003)
- R.S. Iskhakov, S.V. Komogortsev. Phys. Met. Metallogr. 112, 7, 666 (2011)
- D.A. Velikanov. Vestn. Sib. GAU 53, 147 (2014)
- E.A. Denisova, L.A. Chekanova, S.V. Komogortsev, I.V. Nemtsev, R.S. Iskhakov, M.V. Dolgopolova. J. Supercond. Nov. Magn. 34, 10, 2681 (2021)
- R.M. Bozorth. Ferromagnetism. Van Nostrand, N. Y.(1951)
- S.V. Komogortsev, R.S. Iskhakov. Phys. Solid State 47, 3, 495 (2005)
- A.V. Svalov, A.N. Gorkovenko, A. Larranaga, M.N. Volochaev, G.V. Kurlyandskaya. Sensors 22, 21, 8357 (2022)
- P.N. Solovev, A.V. Izotov, B.A. Belyaev, N.M. Boev. Phys. B: Condens. Matter 604, 412699 (2021)
- S.V. Komogortsev, I.G. Vazhenina, S.A. Kleshnina, R.S. Iskhakov, V.N. Lepalovskij, A.A. Pasynkova, A.V. Svalov. Sensors 22, 9, 3324 (2022).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.