Peculiarities of changes in the intensities of the main photoluminescence bands of Tb3+ ions and their satellites in polycrystalline Gd2O3 : Tb(3 mol%)
Bakovets V. V.1, Plyusnin P. E.1, Jushina I. V.1, Rakhmanova M. I.1, Sotnikov A. V.1, Dolgovesova I.P.1, Pivovarova T. D.1
1Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
Email: becambe@niic.nsc.ru, plus@niic.nsc.ru, jush@niic.nsc.ru, rakhmanova_m@mail.ru, sotnikov@niic.nsc.ru, dolgovesova@niic.nsc.ru, pivovarova@niic.nsc.ru

PDF
Samples of Gd2O3 : Tb(3 mol%) phosphor were obtained by sol-gel method followed by annealing at 800oC and 1200oC in air. At high annealing temperature, the intensities of the main emission bands 484 and 541 nm increase, but the ratio of the intensities of these emission bands to their satellites 493 and 549 nm respectively decreases. Based on the analysis of X-ray diffractometry, emission spectra, far-infrared and Raman spectroscopy, as well as diffuse reflectance spectroscopy, we established: the increase in the crystallinity of the samples with a significant reduction of the lattice strain stress at elevated annealing temperatures, changes in the structure of the bandgap with degenerated acceptor and donor zones of impurities Tb4+ and Tb3+ respectively. The diffuse reflection spectra of the sample after annealing at 800oC under optical excitation showed a direct charge transition through the bandgap with Eg=2.56 eV. After elevated annealing temperature the concentration of Tb4+ ions decreases due to reduction to Tb3+. As a result, at low excitation energies the degeneracy of the acceptor zone is still preserved and there is a direct transition of charges through the bandgap with Eg=2.55 eV. At high excitation energies the degeneracy of the acceptor zone is removed and there is a direct transition through the bandgap with Eg=3.39 eV. These effects are accompanied by a relatively large increase in the emission intensity of the satellites, especially at the 549 nm. Keywords: Gd oxide, Tb3++ photoluminescence spectra, far infrared and Raman spectroscopy spectra, structure of the bandgape, distribution of Tb3+ and Tb4+ in cation sublattice.
  1. Z. Xu, J. Yang, Z. Hou, C. Li, C. Zhang, S. Huang, J. Lin. Mater. Res. Bull. 44, 1850 (2009)
  2. M.A. Flores-Gonzalez, G. Ledoux, S. Roux, K. Lebbou, P. Perriat, O. Tillement. J. Solid. State. Chem. 178, 989 (2005)
  3. X. Gao, C. Li, S. Li, H. Zhang, Z. Li, Y. Hong, J. Sun. J. Luminescence 190, 457 (2017)
  4. R. Hemam, L.R. Singh, S.D. Singh, R.N. Sharan. J. Luminescence 197, 399 (2018)
  5. R.S. Loitongbam, W.R. Singh, G. Phaomei, N.S. Singh. J. Luminescence 140, 95 (2013)
  6. M. Ou, B. Muteleta, M. Martini, R. Bazzi, S. Roux, G. Ledoux, O. Tillement, P. Perria. J. Coll. Interf. Sci. 333, 684 (2009)
  7. X. Zhu, Z. Zhou. J. Luminescence 188, 589 (2017)
  8. W.-C. Chien, Y.-Y. Yu, C.-C. Yang. Mater. Des. 31, 1737 (2010)
  9. A. de J.M. Rami rez, A.G. Murillo, F. de J.C. Romo, M.G. Hernandez, D.J. Vigueras, G. Chaderyron, D. Boyer. Mater. Res. Bull. 45, 40 (2010)
  10. V.V. Bakovets, I.P. Dolgovesova, T.D. Pivovarova, M.I. Rakhmanova. FTT 62, 12, 2147 (2020). (in Russian)
  11. M. Nazarov, Do Y. Noh. J. Rare Earths 28, Spec. Issue, 1 (2010)
  12. D. Li, W. Qin, S. Liu, W. Pei, Z. Wang, P. Zhang, L. Wang, L. Huang. J. Alloys Comp. 653, 304 (2015)
  13. F. Vratny. J. Chem. Phys. 34, 1377 (1961)
  14. A.F. Andreeva, V.A. Ogorodnik. Phys. Status. Solidi. B 117, K57 (1983)
  15. V.V. Bakovets, A.V. Sotnikov, A.Sh. Agazhanov, S.V. Stankus, E.V. Korotaev, D.P. Pishchur, A.I. Shkatulov. J. Am. Ceram. Soc. 101, 4773 (2018)
  16. V.V. Bakovets, T.D. Pivovarova, I.P. Dolgovesova, I.V. Korolkov, O.V. Antonova, S.I. Kozhemyachenko. ZhOKh 88, 5, 850 (2018). (in Russian)
  17. D. Bloor, J.R. Dean. J. Phys. C 5, 1237 (1972)
  18. Y. Repelin, C. Proust, E. Husson, M. Beny. J. Solid State Chem. 138, 163 (1995)
  19. V.V. Bakovets, I.P. Dolgovesova, T.D. Pivovarova, L.A. Sheludyakova. FTT 63, 12, 2162 (2021). (in Russian)
  20. J. Ibanez, J.A. Sans, V. Cuenca-Gotor, R. Oliva, O. Gomis, P. Rodri guez-Hernandez, A. Munoz, U. Rodri guez-Mendoza, M. Velazquez, P. Veber, C. Popescu, F.J. Manjon. Inorg. Chem. 59, 9648 (2020)
  21. H. Guo, X. Yang, T. Xiao, W. Zhang, L. Lou, J. Mugnier. Appl. Surf. Sci. 230, 215 (2004)
  22. M.W. Urban, B.C. Cornilsen. J. Phys. Chem. Solids 48, 5, 475 (1987)
  23. J. Tauc, R. Grigorovici, A. Vancu. Phys. State Solids 15, 627 (1966)
  24. K.V. Shalimova, Fizika poluprovodnikov. Energoatomizdat, M. (1985). 392 p. (in Russian)
  25. P. Kubelka, F. Munk. Z. Techn. Phys. 12, 593 (1931)
  26. N.W. Gray, M.C. Prestgard, A. Tiwaria. Appl. Phys. Lett. 105, 2229033 (2014)
  27. W.B. White. Appl. Spectr. 21, 3, 167 (1967)
  28. A.F. Andreeva, I.Ya Gilman. ZhPS 28, 5b, 895 (1978). (in Russian)
  29. E.S. Trofimova, V.A. Pustovarov, A.F. Zatsepin. FTT 61, 5, 872 (2019). (in Russian)
  30. P.P. Fedorov, M.V. Nazarkin, R.M. Zaklyukin. Kristallografiya 47, 316 (2002). (in Russian)
  31. C.L. Luyer, A. Garcia Murillo, E. Bernstein, J. Mugnier. J. Raman Spectr. 34, 234 (2003)
  32. V.V. Bakovets, V.V. Sokolov, I.P. Dolgovesova, T.D. Pivovarova, I.Yu. Filatova, M.I. Rakhmanova, I.V. Yushina, I.P. Asanov, A.V. Sotnikov FTT 64, 11, 1834 (2022). (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru