Multi-mode dynamics of electrons in a Dirac crystal in the field of monochromatic radiation
Kryuchkov S. V. 1,2, Kukhar E. I. 1
1Volgograd State Technical University, Volgograd, Russia
2Volgograd State Socio-Pedagogical University, Volgograd, Russia
Email: eikuhar@yandex.ru

PDF
Multi-mode dynamics with Zitterbewegung of an electron in 2D Dirac crystal placed in the field of monochromatic radiation is studied. For calculations a model Hamiltonian taking into account two independent Dirac points has been used. Calculations have shown that the spectrum of electron oscillations contains a series of new (compared to the usual Zitterbewegung) frequencies. The latter, in the case of a high radiation frequency, are a combination of the Zitterbewegung frequency and frequencies that are multiples of the field frequency. In the case when the field frequency is comparable to the Zitterbewegung frequency, the spectrum of electron oscillations is determined by the field amplitude. The character of this dependence has been shown to be changed by changing of the direction of radiation polarization. The possibility of the appearance of a constant component of the electron velocity in the field of monochromatic radiation is also discussed. Keywords: Zitterbewegung, Graphene, Dirac Crystal, Rabi Frequency. DOI: 10.61011/EOS.2023.02.55800.3359-22
  1. M.I. Katsnelson, K.S. Novoselov, A.K. Geim. Nature Phys., 2, 620 (2006). DOI: 10.1038/nphys384
  2. M.I. Katsnelson. Eur. Phys. J. B, 51, 157 (2006). DOI: 10.1140/epjb/e2006-00203-1
  3. A.F. Young, P. Kim. Nat. Phys., 5, 222 (2009). DOI: 10.1038/nphys1198
  4. I. Romanovsky, C. Yannouleas, U. Landman. Phys. Rev. B, 87, 165431 (2013). DOI: 10.1103/PhysRevB.87.165431
  5. M. Ezawa. Phys. Rev. Lett., 109, 055502 (2012). DOI: 10.1103/PhysRevLett.109.055502
  6. D. Pesin, A.H. MacDonald. Nature Mater., 11, 409 (2012). DOI: 10.1038/nmat3305
  7. P. Delplace, A. Gomez-Leon, G. Platero. Phys. Rev. B, 88, 245422 (2013). DOI: 10.1103/PhysRevB.88.245422
  8. G. Usaj, P.M. Perez-Piskunow, L.E.F. Foa Torres, C.A. Balseiro. Phys. Rev. B, 90, 115423 (2014). DOI: 10.1103/PhysRevB.90.115423
  9. S. Ghosh, A. Manchon. SPIN, 6 (2), 1640004 (2016). DOI: 10.1142/S201032471640004X
  10. C.P. Weber. J. Appl. Phys., 129, 070901 (2021). DOI: 10.1063/5.0035878
  11. T. Oka, H. Aoki. Phys. Rev. B, 79, 081406 (2009). DOI: 10.1103/PhysRevB.79.081406
  12. O.V. Kibis. Phys. Rev. B, 81, 165433 (2010). DOI: 10.1103/PhysRevB.81.165433
  13. G. Montambaux, F. Piechon, J.-N. Fuchs, M.O. Goerbig. Eur. Phys. J. B, 72, 509 (2009). DOI: 10.1140/epjb/e2009-00383-0
  14. E.I. Kukhar, S.V. Kryuchkov. Physica E, 134, 114811 (2021). DOI: 10.1016/j.physe.2021.114811
  15. J. Schliemann, D. Loss, R.M. Westervelt. Phys. Rev. Lett., 94, 206801 (2005). DOI: 10.1103/PhysRevLett.94.206801
  16. J. Cserti, G. David. Phys. Rev. B, 74, 172305 (2006). DOI: 10.1103/PhysRevB.74.172305
  17. T.M. Rusin, W. Zawadzki. Phys. Rev. B, 76, 195439 (2007). DOI: 10.1103/PhysRevB.76.195439
  18. G.M. Maksimova, V.Ya. Demikhovskii, E.V. Frolova. Phys. Rev. B, 78, 235321 (2008). DOI: 10.1103/PhysRevB.78.235321
  19. X. Zhang. Phys. Rev. Lett., 100, 113903 (2008). DOI: 10.1103/PhysRevLett.100.113903
  20. I. Stepanov, M. Ersfeld, A.V. Poshakinskiy, M. Lepsa, E.L. Ivchenko, S.A. Tarasenko, B. Beschoten. arXi.org [Electronic source] arXiv:1612.06190 (2016). URL: https://arxiv.org/abs/1612.06190
  21. Y. Iwasaki, Y. Hashimoto, T. Nakamura, S. Katsumoto. J. Phys. Conf. Ser., 864, 012054 (2017). DOI: 10.1088/1742-6596/864/1/012054
  22. R. Gerritsma, G. Kirchmair, F. Zahringer, E. Solano, R. Blatt, C.F. Roos. Nature, 463, 68 (2010). DOI: 10.1038/nature08688
  23. L. Diago-Cisneros, E. Serna, I.R. Vargas, R. Perez-Alvarez. J. Appl. Phys., 125, 203902 (2019). DOI: 10.1063/1.5078642
  24. N.E. Firsova, S.A. Ktitorov. Phys. Solid State, 63, 313 (2021). DOI: 10.1134/S1063783421020074]
  25. W. Zhang, H. Yuan, W. He, X. Zheng, N. Sun, F. Di, H. Sun, X. Zhang. Commun. Phys., 4, 250 (2021). DOI: 10.1038/s42005-021-00752-8
  26. L.-K. Shi, S.-C. Zhang, K. Chang. Phys. Rev. B, 87, 161115 (2013). DOI: 10.1103/PhysRevB.87.161115
  27. C.S. Ho, M.B.A. Jalil, S.G. Tan. EPL, 108, 27012 (2014). DOI: 10.1209/0295-5075/108/27012
  28. P. Reck, C. Gorini, K. Richter. Phys. Rev. B, 101, 094306 (2020). DOI: 10.1103/PhysRevB.101.094306
  29. T.M. Rusin, W. Zawadzki. Phys. Rev. B, 78, 125419 (2008). DOI: 10.1103/PhysRevB.78.125419
  30. E. Romera, J.B. Roldan, F. de los Santos. Phys. Lett. A, 378, 2582 (2014). DOI: 10.1016/j.physleta.2014.06.040
  31. M.B. Belonenko, N.N. Yanyushkina. Phys. Solid State, 54, 2462 (2012). DOI: 10.1134/S1063783412120050
  32. T.M. Rusin, W. Zawadzki. Phys. Rev. B, 88, 235404 (2013). DOI: 10.1103/PhysRevB.88.235404
  33. I.R. Lavor, D.R. da Costa, A. Chaves, S.H.R. Sena, G.A. Farias, B. Van Duppen, F.M. Peeters. J. Phys. Condens. Matter., 33, 095503 (2021). DOI: 10.1088/1361-648X/abcd7f
  34. W. Zawadzki, T. M. Rusin. J. Phys. Condens. Matter, 23, 143201 (2011). DOI: 10.1088/0953-8984/23/14/143201
  35. T. Huang, T. Ma, L.-G. Wang. J. Phys. Condens. Matter., 30, 245501 (2018). DOI: 10.1088/1361-648X/aac23b
  36. J. Luan, S. Li, T. Ma, L.-G. Wang. J. Phys. Condens. Matter., 30, 395502 (2018). DOI: 10.1088/1361-648X/aadbe0

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru