Media for ultrafast THz photonics
Guselnikov M.S. 1, Zhukova M. O. 1, Kozlov S. A. 1
1 ITMO University, St. Petersburg, Russia
Email: msguselnikov@itmo.ru, mozhukova@itmo.ru, sakozlov@itmo.ru

PDF
Designing of the ultrafast terahertz photonics devices requires materials with the biggest nonlinear refractive index coefficient n2 and the lowest nonlinear response settling time tau in the terahertz spectral range. In the present study, we show that the ratio n2/tau for media with the vibrational nonlinearity in the terahertz range is determined by the square of the medium thermal expansion coefficient and the fifth power of its dominative stretching vibrational mode frequency. These findings are based on the theory of the media vibrational nature nonlinear polarization response to incident THz radiation. We provide estimated values of the n2/tau ratio for a group of liquids and crystal materials. According to our evaluations, n2/tau value for alpha-pinene in the terahertz spectral range is about 106 cm2/J and is almost the biggest one compared to materials with different nonlinearity types in various spectral ranges. Keywords: THz spectral range, high intensity radiation, strong field, vibrational nonlinearity, nonlinear refractive index coefficient, nonlinearity settling time. DOI: 10.61011/EOS.2023.02.55799.4443-22
  1. H. Hafez, X. Chai, A. Ibrahim, S. Mondal, D. Ferachou, X. Ropagnol, T. Ozaki. J. Opt., 18 (9), 093004 (2016). DOI: 10.1088/2040-8978/18/9/093004
  2. T. Elsaesser, K. Reimann, M. Woerner. Concepts and Applications of Nonlinear Terahertz Spectroscopy, 1st ed. (Morgan \& Claypool Publishers, San Rafael, 2019). DOI: 10.1088/2053-2571/aae931
  3. J. O'Hara, S. Ekin, W. Choi, I. Song. Technologies, 7 (2), 43 (2019). DOI: 10.3390/technologies7020043
  4. Y.H. Tao, A.J. Fitzgerald, V.P. Wallace. Sensors, 20 (3), 712 (2020). DOI: 10.3390/s20030712
  5. A.N. Tcypkin, M.V. Melnik, M.O. Zhukova, I.O. Vorontsova, S.E. Putilin, S.A. Kozlov, X.-Ch. Zhang. Opt. Express, 27 (8), 10419 (2019). DOI: 10.1364/OE.27.010419
  6. F. Novelli, Ch.Y. Ma, N. Adhlakha, E.M. Adams, Th. Ockelmann, D. Das Mahanta, P. Di Pietro, A. Perucchi, M. Havenith. Appl. Sci., 10 (15), 5290 (2020). DOI: 10.3390/app10155290
  7. K.J. Garriga Francis, M.L. Pac Chong, Y.E, X.-C. Zhang. Opt. Lett., 45 (20), 5628 (2020). DOI: 10.1364/OL.399999
  8. A. Tcypkin, M. Zhukova, M. Melnik, I. Vorontsova, M. Kulya, S. Putilin, S. Kozlov, S. Choudhary,R.W.Boyd.Phys.Rev.Appl., 15(5),054009(2021). DOI:10.1103/physrevapplied.15.054009
  9. H.M. Gibbs. Optical Bistability: Controlling Light with Light, 1st ed. (Academic Press, NY., 1985)
  10. N.N. Rozanov, V.E. Semenov, G.V. Khodova. Quantum Electron., 12 (2), 193 (1982). DOI: 10.1070/QE1982v012n02ABEH005474
  11. N.N. Rozanov. Quantum Electron., 20 (10), 1250, (1990). DOI: 10.1070/QE1990v020n10ABEH007458
  12. K. Dolgaleva, D.V. Materikina, R.W. Boyd, S.A. Kozlov. Phys. Rev. A, 92 (2), 023809-1 (2015). DOI: 10.1103/PhysRevA.92.023809
  13. M. Zhukova, M. Melnik, I. Vorontsova, A. Tcypkin, S. Kozlov. Photonics, 7 (4), 98 (2020). DOI: 10.3390/photonics704009
  14. S.A. Akhmanov, V.A. Vysloukh, A.S. Chirkin. M. Optika Femtosekundnykh lazernikh impulsov. 1st ed. (Nauka, M., 1988) (in Russian)
  15. D. Cotter. In: Ultrafast phenomena 5: Proc. of the 5th OSA Topical Meeting Snowmass, Colorado, June 16-19, 1986, ed. by G.R. Fleming, A.E. Siegman. Springer Series in Chemical Physics (Springer, Berlin, Heidelberg, 1986), p. 274
  16. M.S. Guselnikov, M.O. Zhukova, S.A. Kozlov. J. Opt. Technol. 89 (7), 371 (2022). DOI: 10.1364/JOT.89.000371
  17. R.W. Boyd. Nonlinear Optics, 3rd ed. (Academic Press, San Diego, 2008)
  18. Q. Jin, E. Yiwen, S. Gao, X.-C. Zhang. Adv. Photon., 2 (1), 015001 (2020). DOI: 10.1117/1.AP.2.1.015001
  19. K. Lengyel, A. Peter, L. Kovacs, G. Corradi, L. Palfalvi, J. Hebling, M. Unferdorben, G. Dravecz, I. Hajdara, Zs. Szaller, K. Polgar. Appl. Phys. Rev., 2 (4), 040601 (2015). DOI: 10.1063/1.4929917
  20. I.A. Kaplunov, G.I. Kropotov, V.E. Rogalin, A.A. Shakhmin. Opt. Spectrosc., 128 (10), 1583 (2020). DOI: 10.1134/S0030400X20100136
  21. H.H. Li. J. Phys. Chem. Ref. Data, 5 (2), 329 (1976). DOI: 10.1063/1.55553
  22. G.M. Hale, M.R. Querry. Appl. Opt., 12 (3), 555 (1973). DOI: 10.1364/AO.12.000555
  23. K.B. Bec, C.W. Huck. Front. Chem., 7, (2019). DOI: 10.3389/fchem.2019.00048
  24. M. Pradhita, M. Masruri, M.F. Rahman. In: Proc.IConSSE FSM SWCU (2015), p. BC.90
  25. A. Ashkin, G.D. Boyd, J.M. Dziedzic, R.G. Smith, A.A. Ballman, J.J. Levinstein, K. Nassau. Appl. Phys. Lett., 9 (1), 72 (1966). DOI: 10.1063/1.1754607
  26. D.N. Nikogosyan. Nonlinear Optical Crystals: A Complete Survey, 1st ed. (Springer-Verlag, NY., 2005). DOI: 10.1007/b138685
  27. J. Ilic Pajic, G. Ivanic, I. Radovic, A. Grujic, J. Stajic-Trov sic, M. Stijepovic, M. Kijevv canin. J. Chemical Thermodynamics, 144, 106065 (2020). DOI: 10.1016/j.jct.2020.106065
  28. P.P. Markowicz, M. Samoca, J. Cerne, P.N. Prasad, A. Pucci. Opt. Expr., 12 (21), 5209 (2004). DOI: 10.1364/opex.12.005209
  29. G. S. Kell. J. Chem. Eng. Data, 12 (1), 66 (1967). DOI: 10.1021/je60032a018
  30. Z. Wilkes, S. Varma, Y.-H. Chen, H. Milchberg, T. Jones, A. Ting. Appl. Phys. Lett., 94 (21), 211102 (2009). DOI: 10.1063/1.3142384
  31. D.E. Zelmon, D.L. Small, D. Jundt. J. Opt. Soc. Am. B, 14 (12), 3319 (1997). DOI: 10.1364/JOSAB.14.003319
  32. J.D. Axe, D.F. O'Kane. Appl. Phys. Lett., 9 (1), 58 1966. DOI: 10.1063/1.1754600
  33. I.A. Kulagin, R.A. Ganeev, R.I. Tugushev, A.I. Ryasnyansky, T. Usmanov.] Quantum Electron., 34 (7), 657 (2004). DOI: 10.1070/QE2004v034n07ABEH002823
  34. J. Hebling, M.C. Hoffmann, K.L. Yeh, G. Toth, K.A. Nelson. In: Ultrafast Phenomena XVI, ed. by P. Corkum, S. Silvestri, K. Nelson, E. Riedle, R. Schoenlein. Springer Ser. in Chemical Physics (Springer, Berlin, Heidelberg, 2009), v. 92, p. 651. DOI: 10.1007/978-3-540-95946-5_211
  35. R. DeSalvo, A.A. Said, D.J. Hagan, E.W. van Stryland, M. Sheik-Bahae. IEEE J. Quant. Electron., 32 (8), 1324 (1996). DOI: 10.1109/3.511545
  36. T. Ji, Z. Zhang, M. Chen, T. Xiao. In: Proc. SPIE 8909, International Symposium on Photoelectronic Detection and Imaging 2013: Terahertz Technologies and Applications (23 August 2013), p. 89090Z. DOI: 10.1117/12.2034616
  37. P.D. Pathak, N.G. Vasavada. Acta Crystallogr. A, 26 (6), 655 (1970). DOI:10.1107/s0567739470001602
  38. A. Rao, K. Narender, K. Rao, N. Krishna. J. Mod. Phys., 4 (2), 208 (2013). DOI: 10.4236/jmp.2013.42029
  39. W.L. Smith, J.H. Bechtel, N. Bloembergen. Phys. Rev. B, 12 (2), 706 (1975). DOI: 10.1103/PhysRevB.12.706
  40. V.Y. Bodryakov. Inorg. Mater., 56 (6), 633 (2020). DOI: 10.1134/S0020168520060035
  41. M.R. Querry. Optical constants of minerals and other materials from the millimeter to the ultraviolet, 1st ed. (NTIS Springfield, Virginia, 1987)
  42. H. Zhang, S. Virally, Q. Bao, L. Kian Ping, S. Massar, N. Godbout, P. Kockaert. Optics Lett., 37 (11), 1856 (2012). DOI: 10.1364/ol.37.001856
  43. H.A. Hafez, S. Kovalev, J.-C. Deinert, Z. Mics, B. Green, N. Awari, M. Chen, S. Germanskiy, U. Lehnert, J. Teichert, Z. Wang, K.-J. Tielrooij, Zh. Liu, Z. Chen, A. Narita, K. Mullen, M. Bonn, M. Gensch, D. Turchinovich. Nature, 561, 507 (2018). DOI: 10.1038/s41586-018-0508-1
  44. Q. Bao, H. Zhang, Z. Ni, Y. Wang, L. Polavarapu, Z. Shen, Q.-H. Xu, D. Tang, K.P. Loh. Nano Research, 4 (3), 297 (2010). DOI: 10.1007/s12274-010-0082-9
  45. H.A. Hafez, S. Kovalev, K. Tielrooij, M. Bonn, M. Gensch, D. Turchinovich. Adv. Opt. Mater., 8 (3), 1900771 (2019). DOI: 10.1002/adom.201900771
  46. F. Zhang, H.-W. Wang, M. Hayashi, Sh. Pan. J. Phys. Chem. C, 126 (36), 15509 (2022). DOI: 10.1021/acs.jpcc.2c04766
  47. X. Chen, C. Boo, N.Y. Yip. Water Res., 201, 117311 (2021). DOI: 10.1016/j.watres.2021.117311
  48. J. Zhou, X. Rao, X. Liu, T. Li, L. Zhou, Y. Zheng, Z. Zhu. AIP Adv., 9 (3), 035346 (2019). DOI: 10.1063/1.5082841
  49. J.B. Patterson, E.C. Morris. Metrologia, 31 (4), 277 (1994). DOI: 10.1088/0026-1394/31/4/001
  50. R.V. Vaz, A.L. Magalhaes, A.A. Valente, C.M. Silva. J. Supercrit. Fluids, 107, 690 (2016). DOI: 10.1016/j.supflu.2015.07.033
  51. R.A. Clara, A. C. G. Marigliano, H.N. Solimo. J. Chem. Eng. Data, 54 (3), 1087 (2009). DOI: 10.1021/je8007414
  52. X. Wu, C. Zhou, W R. Huang, F. Ahr, F.X. Kartner. Opt. Expr., 23 (23), 29729 (2015). DOI:10.1364/oe.23.029729
  53. A.A. Blistanov, V.S. Bondarenko, N.V. Perelomova, F.N. Strizhevskaya, V.V. Chkalova, M.P. Shaskolskaya. Ed. M.P. Shaskolskaya. Acoustic Crystals (In Russian). (Nauka, M. (1982) (in Russian)
  54. A.S. Meijer, J.J.H. Pijpers, H.K. Nienhuys, M. Bonn, W.J. van der Zande. J. Opt. A, 10 (9), 095303b (2008). DOI: 10.1088/1464-4258/10/9/095303

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru