Optimal ray-tracing schemes in the mid-IR range through the main model shapes of rough and polished diamonds
Gulina Y. S.
1, Khmelnitsky R. A.
1,2, Kovalchuk O. E.
1,31Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Fryazino Branch, Kotel’nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Fryazino, Moscow oblast, Russia
3Geo-Scientific Research Enterprise Public Joint Stock Company «ALROSA», Mirny, Russia
Email: gulinays@lebedev.ru
An analysis of ray-tracing schemes in the mid-IR range through the main model forms of rough and polished diamonds used for determining content of basic defects based on optical absorption measurements has been carried out. It is shown that in the traditional transmission measurement scheme only a small fraction of the radiation incident on the crystal is detected due to refraction and scattering in many crystals, leading to decreasing of the signal-to-noise ratio and to narrowing of the signal levels dynamic range. Practical recommendations are given and optimal variants of ray-tracing schemes through the most characteristic crystal shapes are proposed. This makes it possible to detect the maximum fraction of the radiation transmitted through the crystal, and to implement effective measurements of optical absorption in a wide dynamic range to determine the concentrations of basic defects with a high signal-to-noise ratio. Keywords: Rough/faceted diamonds, optical active defects, optical transmission/absorption measurement, signal dynamic range, ray tracing. DOI: 10.61011/EOS.2023.02.55793.1-23
- M.N.R. Ashfold, J.P. Goss, B.L. Green, P.W. May, M.E. Newton, C.V. Peaker. Chem. Rev., 120 (12), 5745 (2020). doi: 10.1021/acs.chemrev.9b00518
- R.A. Khmelnitskii. Introduction to Diamond Gemology (Alrosa Technology, Moscow, 2021)
- S.R. Boyd, I. Kiflawi, G.S. Woods. Philos. Mag. B, 69 (6), 1149 (1994). doi:10.1080/01418639408240185
- A.M. Zaitsev. Optical Properties of Diamond: A Data Handbook (Springer, Berlin/Heidelberg, Germany, 2013)
- A.T. Collins. Phys. B (Amsterdam), 185 (1-4), 284 (1993). doi: 10.1016/0921-4526(93)90250-A
- H. Sumiya, S. Satoh. Diamond Relat. Mater., 5 (11), 1359 (1996). doi: 10.1016/0925-9635(96)00559-6
- S.I. Kudryashov, P.A. Danilov, N.A. Smirnov, A.O. Levchenko, M.S. Kovalev, Y.S. Gulina, O.E. Kovalchuk, A.A. Ionin. Opt. Mater. Express, 11 (8), 2505 (2021). doi:10.1364/OME.427788
- R. A. Khmelnitsky, O.E. Kovalchuk, Y.S. Gulina, A.A. Nastulyavichus, G.Y. Kriulina, N.Y. Boldyrev, S.I. Kudryashov, A.O. Levchenko, V.S. Shiryaev. Diamond Relat. Mater., 128, 109278 (2022). doi: 10.1016/j.diamond.2022.109278
- R.P. Mildren. Opt. Eng. Diamond, 1, 1 (2013). doi: 10.1002/9783527648603.ch1
- K.M. McNamara, B.E. Williams, K.K. Gleason, B.E. Scruggs. J. Appl. Phys., 76 (4), 2466 (1994). doi: 10.1063/1.357598
- F.V. Kaminsky, G.K. Khachatryan. The Canadian Mineralogist, 39 (6), 1733 (2001). doi:10.2113/gscanmin.39.6.1733
- S.D. Smith, J.R. Hardy. Philos. Mag., 5 (60), 1311 (1960). doi:10.1080/14786436008238345
- J.R. Hardy, S.D. Smith. Philos. Mag., 6 (69), 1163 (1961). doi:10.1080/14786436108239677
- C.A. Klein, T.M. Hartnett, C.J. Robinson. Phys. Rev. B, 45 (22), 12854 (1992). doi:10.1103/PhysRevB.45.12854
- D. Howell, C.J. O'Neill, K.J. Grant, W.L. Griffin, N.J. Pearson, S.Y. O'Reilly. Diamond Relat. Mater., 29, 29 (2012). doi:10.1016/j.diamond.2012.06.003
- Y. Zheng, C. Li, J. Liu, J. Wei, H. Ye. Functional Diamond, 1 (1), 63 (2022). doi:10.1080/26941112.2021.1877021
- M.I. Rakhmanova, A.Y. Komarovskikh, Y.N. Palyanov, A.A. Kalinin, O.P. Yuryeva V. A. Nadolinny. Crystals, 11 (4), 366 (2021). doi:10.3390/cryst11040366
- R. Tappert, M.C. Tappert. Diamonds in Nature: A Guide to Rough Diamonds (Springer Science \& Business Media, 2011)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.