Stimulated Raman scattering of 0.3-ps 515 nm laser pulses in Ca3(VO4)2 and Ca0.27Sr0.3(VO4)2
Kinyaevskiy I O 1, Kovalev V I1, Koribut A V1, Dunaeva E E 2, Semin N S1, Ionin A A1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: kinyaevskiyio@lebedev.ru

PDF
The prospects of SRS-active calcium/strontium orthovanadate crystals, (Ca3(VO4)2 and Ca2.7Sr0.3(VO4)2), for spectral conversion of ultrashort visible-range laser pulses evaluated in a single-pass scheme with pump focusing into the samples. For the 3 μJ incident laser pulses of 0.3 ps duration at wavelength of 515 nm the energy conversion efficiency of up to ~3.5% to the Stokes component shifted in frequency by ~850 cm-1 obtained in a 1.3 cm long sample of Ca2.7Sr0.3(VO4)2 crystal. Simultaneously, in the transmitted radiation spectrum the amplitude of Stokes component reached 1/3 of the amplitude at the pump wavelength. Under the same conditions, SRS in a Ca3(VO4)2 crystal was not detected at all. It was shown that the observed differences can be explained by the attenuation of pump pulse due to difference in two-photon absorption in these crystals. Keywords: stimulated Raman scattering, two-photon absorption, Ca3(VO4)2; femtosecond pulses. DOI: 10.61011/EOS.2023.02.55785.8-23
  1. I.O. Kinyaevskiy, V.I. Kovalev, A.V. Koribut, Ya.V. Grudtsyn, L.V. Seleznev, E.E. Dunaeva, A.A. Ionin. Quantum. Electron., 52 (3), 278 (2022). DOI: 10.1070/QEL18002
  2. A.V. Konyashchenko, L.L. Losev, V.S. Pazyuk. Quantum Electron., 51 (3), 217 (2021). DOI: 10.1070/QEL17508
  3. I.O. Kinyaevskiy, V.I. Kovalev, P.A. Danilov, N.A. Smirnov, S.I. Kudryashov, A.V. Koribut, A.A. Ionin. Chin. Opt. Lett., 21 (3), (2023). DOI: 10.3788/COL202321.031902
  4. D.V. Petrov, I.I. Matrosov. Opt. and spectr., 129 (5), 550 (2021). DOI: 10.61011/EOS.2023.02.55785.8-23
  5. I.R. Shen. Printsipy nelineinoi optiki (Nauka, M., 1989)
  6. C. Li, W. Yang, Y. Chang. Jap. J. Appl. Phys., 24 (S2), 508 (1985). DOI: 10.7567/JJAPS.24S2.508
  7. P.G. Zverev, A.Ya. Karasik, T.T. Basiev, L.I. Ivleva, V.V. Osiko. Quantum Electron., 33 (4), 331 (2003). DOI: 10.1070/QE2003v033n04ABEH002408
  8. M. Frank, M. Jeli nek, D. Vyhli dal, V. Kubev cek, S.N. Smetanin, L.I. Ivleva, E.E. Dunaeva, I.S. Voronina, V.E. Shukshin, P.G. Zverev. Laser Phys. Lett., 17 (11), 115402 (2020). DOI: 10.1088/1612-202X/abbedf
  9. M. Sheik-Bahae, D.J. Hagan, E.W. Van Stryland. Phys. Rev. Lett., 65 (1), 96 (1990). DOI: 10.1103/PhysRevLett.65.96
  10. P. Parhi, V. Manivannan, S. Kohli, P. Mccurdy. Bull. Mater. Sci., 31 (6), 885 (2008). DOI: 10.1007/s12034-008-0141-y
  11. I.S. Voronina, E.E. Dunaeva, V.V. Voronov, V.E. Shukshin, S.N. Smetanin, L.I. Ivleva. Opt. Mater., 111 (11), 110642 (2021). DOI: 10.1016/j.optmat.2020.110642
  12. I.O. Kinyaevskiy, V.I. Kovalev, P.A. Danilov, N.A. Smirnov, S.I. Kudryashov, A.V. Koribut, A.A. Ionin. Opt. Lett., 46 (3), 697 (2021). DOI: 10.1364/OL.417661
  13. I.O. Kinyaevskiy, V.I. Kovalev, A.V. Koribut, P.A. Danilov, N.A. Smirnov, S.I. Kudryashov, Ya.V. Grudtsyn, E.E. Dunaeva, V.A. Trofimov, A.A. Ionin. Journ. Russ. Laser Res., 43, 315 (2022). DOI: 10.1007/s10946-022-10053-2
  14. R.G. Smith. Appl. Opt., 11 (11), 2489 (1972)
  15. I.O. Kinyaevskiy, A.V. Koribut, Y.V. Grudtsyn, L.V. Seleznev, V.I. Kovalev, D.V. Pushkarev, E.E. Dunaeva, A.A. Ionin. Laser Phys. Lett., 19 (9), 095403 (2022). DOI: 10.1088/1612-202X/ac7f36

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru