Influence of focusing on transient SRS self-seed by SPM of 0.3 ps laser pulses in a BaWO4 crystal
Kinyaevskiy I.O. 1, Koribut A.V. 1, Gritsenko I.V.1, Sagitova A.M.1, Ionin M.V.1, Dunaeva E.E.2, Ionin A.A.1
1Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
2Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia
Email: andrew-koribut@yandex.ru

PDF
The effect of focusing, taking into account self-focusing, on the interference of SRS (stimulated Raman scattering) and self-phase modulation in a 8 mm BaWO4 crystal pumped by laser pulses with a duration of 0.3 ps and a wavelength of 515 nm is experimentally studied. The maximum efficiency of SRS conversion (~23%) to the Stokes component of the ν1=925 cm-1 strongest mode is obtained with a lens with a focal length of 40 mm at the linear focus shift towards the rear facet of the crystal. The increase in efficiency, when the linear focus is shifted to the rear facet, is associated with an increase in the distance between the linear and nonlinear foci, which results in an increase in the effective length of the nonlinear interaction. Keywords:: stimulated Raman scattering, self-phase modulation, self-focusing, BaWO4, femtosecond pulses. DOI: 10.61011/EOS.2023.02.55784.6-23
  1. A.A. Ionin, I.O. Kinyaevsky, Yu.M. Klimachev, A.Yu. Kozlov, A.A. Kotkov, O.A. Rulev, A.M. Sagitova, L.V. Seleznev, D.V. Sinitsyn. Zhurn. prikl. spektr., 89 (4), 443 (2022) (in Russian). DOI: 10.47612/0514-7506-2022-89-4-443-454
  2. V.S. Gorelik. Sibirskiy fizicheskiy zhurnal, 13 (3) 62 (2018). (in Russian). DOI: 10.25205/2541-9447-2018-13-3-62-68
  3. A. Dubietis, G. Tamovsauskas, R. vSuminas, V. Jukna, A. Couairon. Lithuanian J. Physics, 57 (3), 13 (2017). DOI: 10.3952/physics.v57i3.3541
  4. I.O. Kinyaevskiy, V.I. Kovalev, P.A. Danilov, N.A. Smirnov, S.I. Kudryashov, L.V. Seleznev, E.E. Dunaeva, A.A. Ionin. Opt. Lett., 45 (8) 2160 (2020). DOI: 10.1364/OL.391550
  5. I. Kinyaevskiy, V. Kovalev, P. Danilov, N. Smirnov, S. Kudryashov, A. Koribut, A. Ionin. Chinese Opt. Lett., 21 (3) (2023). DOI: 10.3788/COL202321.031902
  6. I. Kinyaevskiy, V. Kovalev, P. Danilov, N. Smirnov, S. Kudryashov, A. Koribut, A. Ionin. Opt. Lett., 46 (3), 697 (2021). DOI: 10.1364/OL.417661
  7. I.O. Kinyaevskiy, V.I. Kovalev, A.V. Koribut, P.A. Danilov, N.A. Smirnov, S.I. Kudryashov, Ya.V. Grudtsyn, E.E. Dunaeva, V.A. Trofimov, A.A. Ionin. J. Rus. Laser Research, 43, 315 (2022). DOI: 10.1007/s10946-022-10053-2
  8. R.Y. Chiao, E. Garmire, C.H. Townes. Phys. Rev. Lett., 13 (15), 479 (1964). DOI: 10.1103/PhysRevLett.13.479
  9. L.I. Ivleva, I.S. Voronina, P.A. Lykov, L.Y. Berezovskaya, V.V. Osiko. J. Crystal Growth, 304 (1), 108 (2007). DOI: 10.1016/j.jcrysgro.2007.02.020
  10. A.I. Vodchits, V.A. Orlovich, P.A. Apanasevich, T.T. Basiev, P.G. Zverev. Opt. Mater., 29 (12), 1616 (2007). DOI: 10.1016/j.optmat.2006.08.005
  11. J.H. Marburger. Progress in Quantum Electronics, 4, 35 (1975). DOI: 10.1016/0079-6727(75)90003-8
  12. E.T.J. Nibbering, G. Grillon, M.A. Franco, B.S. Prade, A. Mysyrowicz. JOSA B, 14 (3), 650 (1997). DOI: 10.1364/JOSAB.14.000650
  13. V.P. Kandidov, V.Yu. Fedorov, O.V. Tverskoi, O.G. Kosareva, S.L. Chin. Quant. Electron., 41 (4) 382 (2011). DOI: 10.1070/QE2011v041n04ABEH014486
  14. A. Penzkofer, A. Laubereau, W. Kaiser. Prog. Quant. Electron., 6 (2), 55 (1979). DOI: 10.1016/0079-6727(79)90011-9
  15. Y. Geints, O. Minina, A. Zemlyanov. JOSA B, 39 (6), 1549 (2022). DOI: 10.1364/JOSAB.453694

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru