Mutual transformation of the light waves by contra-directional mixing on reflection holographic grating in Bi12SiO20 crystal of (001)-cut
Naunyka V. N.1, Makarevich A. V.1
1Mozyr State Pedagogical University named after I.P.Shamyakin, Mozyr, Republic of Belarus
Email: valnav@inbox.ru

PDF
The features of energy exchange during the contra-directional mixing of two linearly polarized light waves in a cubic photorefractive Bi12SiO20 piezocrystal of (001)-cut are analyzed. The dependences of the relative intensity of the signal wave on the azimuth of its polarization at the entrance to the crystal during mixing with the reference wave polarized in the plane of incidence are theoretically studied for various crystal orientation angles. The dependence of the relative intensity of the signal wave on the azimuth of its polarization is experimentally studied for the cases when the vector amplitudes of light waves propagating in the crystal are parallel and perpendicular to each other. The calculation is based on the numerical solution of the coupled waves equations with and without taking into account the self-diffraction of the light waves by the reflection holographic grating recorded in the crystal. Based on a comparison of theoretical and experimental data, the influence of self-diffraction on the mutual transformation of light waves during their contra-directional mixing is analyzed. The limits of applicability of the static grating and the dynamic grating approximations for solution of the coupled waves equations are determined. Keywords: Photorefractive crystal, reflection holographic grating, coupled wave equations, self-diffraction.
  1. S.M. Shandarov, N.I. Burimov, Yu.N. Kulchin, R.V. Romashko, A.L. Tolstik, V.V. Shepelevich. Kvantovaya elektron. 38, 11, 1059 (2008). (in Russian)
  2. M.P. Petrov, S.I Stepanov, A.V. Khomenko. Fotorefraktivnyie krictally v kogerentnoy optike. Nauka, SPb. (1992). 320 p. (in Russian)
  3. V.M. Petrov, A.V. Shamray. Interferentsiya i diffraktsiya dlya interferentsionnoy fotoniki. Lan, SPb (2019). 460 p. (in Russian)
  4. A.A. Izvanov, A.E. Mandel, N.D. Khatkov, S.M. Shandarov. Avtometriya. 2, 79 (1986). (in Russian)
  5. S.M. Shandarov, V.V. Shepelevich, N.D. Khatkov. Optika i spektroskopiya 70, 5, 1068 (1991). (in Russian)
  6. S.I. Stepanov, S.M. Shandarov, N.D. Khatkov. FTT 29, 10, 3054 (1987). (in Russian)
  7. V.V. Shepelevich, S.M. Shandarov, A.E. Mandel. Ferroelectrics 110, 235 (1990)
  8. V.V. Shepelevich. Zhurn. prikl. spektr. 78, 4, 493 (2011). (in Russian)
  9. V.I. Burkov, Yu.F. Kargin, V.A. Kizel, V.I. Sitnikova, V.M. Skorikov. Pis'ma v ZhETF 38, 7, 326 (1988). (in Russian)
  10. B.V. Bokut, G.S. Mityurich, V.V. Shepelevich. Dokl. AN BSSR 23, 6, 507 (1979). (in Russian)
  11. P.P. Khomutovski, V.V. Shepelevich. Proc. SPIE 3347, 84 (1998)
  12. A.A. Firsov, V.V. Shepelevich. Vesn. Mozyrskogo gos. ped. un-ta 1, 21 (2005). (in Russian)
  13. V.N. Naunyka, V.V. Shepelevich, S.M. Shandarov. Optika i spektroskopiya 129, 1, 66 (2021). (in Russian)
  14. R.V. Litvinov. Kvantovaya elektron. 37, 2, 154 (2007). (in Russian)
  15. H. Lordue G., J.A. Gomez, A. Salazar. Opt. Commun. 284, 446 (2011)
  16. N.M. Kozhevnikov. Optika i spektroskopiya 117, 6, 983 (2014). (in Russian)
  17. S. Plaipichita, P. Buranasiria, C. Ruttanapuna, P. Jindajitawata. Integrated Ferroelectrics 156, 1, 150 (2014)
  18. M.A. Bryushinin, V.V. Kulikov, I.A. Sokolov, P. Delaye, G. Pauliat. FTT 56, 6, 1158 (2014). (in Russian)
  19. N. Katyal, Natasha, A. Kapoor. Optik 126, 5941 (2015)
  20. V.V. Davydovskaya, V.V. Shepelevich. Vestn. Polotskogo gos. un-ta. Ser. C 12, 54 (2018). (in Russian)
  21. S. Mallick, M. Miteva, L. Nikolova. J. Opt. Soc. Am. B 14, 5, 1179 (1997)
  22. M. Weber, E. Shamonina, K.H. Ringhofer, G. von Bally. Opt. Mater 18, 119 (2001)
  23. V.V. Shepelevich, V.N. Naunyka, S.F. Nichiporko, S.M. Shandarov, A.E. Mandel. Pis'ma v ZhTF 29, 18, 22 (2003). (in Russian)
  24. N.V. Kukhtarev, V.B. Markov, S.G. Odulov, M.S. Soskin, V.L. Vinetskii. Ferroelectrics 22, 949 (1979).
  25. K.S. Aleksandrov, V.S. Bondarenko, M.P. Zaitseva, B.P. Sorokin, Yu.I. Kokorin, V.M. Zrazhevsky, A.M. Sysoev, B.V. Sobolev. FTT 26, 12, 3603 (1984). (in Russian)
  26. G.A. Babonas, A.A. Reza, E.I. Leonov, V.I. Shandaris. ZhTF 55, 6, 1203 (1985). (in Russian)
  27. Y.H. Ja. Opt. Quant. Electron. 15, 529 (1983)
  28. V.N. Naunyka, V.V. Shepelevich. Pis'ma v ZhTF 33, 17, 16 (2007). (in Russian)
  29. V.V. Shepelevich, N.N. Egorov. Pis'ma v ZhTF 17, 5, 24 (1991). (in Russian)
  30. L. Solymar, D.J. Webb, A. Grunnet-Jepsen. The physics and applications of photorefractive materials. Clarendon Press, Oxford. (1996). 493 p.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru