Effect of orientation of NiSb needle inclusions on temperature dependence of resistance in Cd0.95Ni0.05Sb crystals
Zakhvalinskii V.S. 1, Pilyuk E.A. 1,2, Kochura A. V. 3,2, Morgun L.A. 2, Davydov A.B. 2, Aung Zaw Htet3, Rodionov V.V. 3, Aronzon B.A. 2
1Belgorod National Research University, Belgorod, Russia
2Lebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
3Southwest State University, Kursk, Russia
Email: v_zaxval@mail.ru, pilyuk@yandex.ru, akochura@mail.ru, morgunla@lebedev.ru, davydovab@lebedev.ru, zawh0898@gmail.com, vovarodionov2009@yandex.ru, aronzon@mail.ru

PDF
A composite Cd0.95Ni0.05Sb crystal consisting of CdSb and NiSb inclusions was obtained by the modified Bridgman method. It was shown by the methods of scanning electron microscopy, X-ray phase analysis, energy-dispersive X-ray spectroscopy, and studies of Raman spectra, that the main CdSb matrix was a block single crystal (orthorhombic Pbca structure) containing microcrystalline acicular inclusions of the second NiSb phase (hexagonal structure of the NiAs type P63/mmc). It has been found that the anisotropy of single-crystal NiSb needles in samples of the Cd0.95Ni0.05Sb crystalline composite (needles are directed along and across the current direction) significantly affects the resistance and magnetoresistance of the crystal. The interface is a needle-like inclusion - the matrix can become superconducting, which affects the conductivity of the composite as a whole. However, this superconductivity is insufficient for the transition at the experimental temperatures to the superconducting phase with zero resistance of the composite. Keywords: cadmium antimonide, nickel antimonide, composite, anisotropy of conductivity, interface superconductivity.
  1. D.M. Bercha, I.V. Slipukhina, M. Sznajder, K.Z. Rushchanskii. Phys. Rev. B 70, 23, 235206 (2001)
  2. B. Zhou, C. Sun, X. Wang, Z. Bu, W. Li, Y. Pei. ACS Appl. Mater. Interfaces 11, 30, 27098 (2019)
  3. R. Biswas, S. Mukherjee, R.C. Mallik, S. Vitta, T. Dasgupta. Mater. Today Energy 12, 107 (2019)
  4. M.K. Jana, K. Biswas. ACS Energy Lett. 3, 6, 1315 (2018)
  5. S. Wang, J. Yang, L. Wu, P. Wei, J. Yang, W. Zhang, Y. Grin. Chem.Mater. 27, 3, 1071 (2015)
  6. D.M. Bercha, O.B. Mitin, I.M. Rarenko, L.Yu. Kharkhalis, A.I. Bercha. FTP 28, 7, 1249 (1994) (in Russian)
  7. E.K. Arushanov. Prog. Cryst. Growth Charact. 13, 1, 1 (1986)
  8. R. Laiho, A.V. Lashkul, K.G. Lisunov, E. Lahderanta, I. Ojala, V.S. Zakhvalinskii. Semicond. Sci. Technol. 21, 3, 228 (2006)
  9. R. Laiho, A.V. Lashkul, K.G. Lisunov, E. Lahderanta, M.A. Shakhov, V.S. Zakhvalinskii. Semicond. Sci. Technol. 23, 12, 125001 (2008)
  10. J.L. Harris, P.M. Shand, L.V. Shapoval, A. Van Waardhuizen, L.H. Strauss. J. Magn. Magn. Mater. 321, 8, 1072 (2009)
  11. R.G. Dzhamamedov, T.R. Arslanov, A.Yu. Mollaev, A.V. Kochura. J. Alloys. Compounds 699, 1104 (2017)
  12. R. Laiho, A.V. Lashkul, E. Lahderanta, K.G. Lisunov, I. Ojala, V.S. Zakhvalinskii. J. Magn. Magn. Mater. 300, 1, e8 (2006)
  13. T.R. Arslanov, R.G. Dgamamedov, V.S. Zakhvalinskii, A.V. Kochura, V.V. Rodionov, R. Ahuja. Appl. Phys. Lett. 115, 25, 252101 (2019)
  14. O. Ivanov, V. Zakhvalinskii, E. Pilyuk, A. Kochura, A. Kuzmenko, A. Ril. Chin. J. Phys. 72, 223 (2021)
  15. V.F. Gantmakher, V.M. Teplinskii, V.N. Zverev, O.I. Barkalov. Physica B 194--196, 1-2, 1083 (1994)
  16. K.-J. Range, J. Pfauntsch, U. Klement. Acta Cryst. Sect. C 44, 12, 2196 (1988)
  17. X.-N. Luo, C. Dong, S.-K. Liu, Z.-P. Zhang, A.-L. Li, L.-H. Yang, X.-C. Li. Chin. Phys. B 24, 6, 067201 (2015)
  18. D.M. Trich\^es, S.M. Souza, J.C. de Lima, T.A. Grandi, C.E.M. Campos, A. Polian, J.P. Itie, F. Baudelet, J.C. Chervin. J. Appl. Phys. 106, 1, 013509 (2009)
  19. H. Matsunami, Y. Nishihara, T. Tanaka. J. Phys. Soc. Jpn 27, 6, 1507 (1969)
  20. V.F. Degtyareva, O. Degtyareva, H.-K. Mao, R.J. Hemley. Phys. Rev. B 73, 21, 214108 (2006)
  21. V.F. Gantmakher, V.N. Zverev, V.M. Teplinskiy, O.I. Barkalov. Pis'ma v ZhETF 56, 6, 311 (1992) (in Russian)
  22. B.I. Shklovskii, A.L. Efros. Electronic Properties of Doped Semiconductor. Springer, Berlin (1984)
  23. K.D. Hale. J. Mater. Sci. 11, 11, 2105 (1976)
  24. T. Chen, D. Rogowski, R.M. White. J. Appl. Phys. 49, 3, 1425 (1978)
  25. G. Shipunov, B.R. Piening, C. Wuttke, T.A. Romanova, A.V. Sadakov, O.A. Sobolevskiy, E.Yu. Guzovsky, A.S. Usoltsev, V.M. Pudalov, D.V. Efremov, S. Subakti, D. Wolf. J. Phys. Chem. Lett. 12, 28, 6730 (2021)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru