Spectral methods for study of the G-protein-coupled receptor rhodopsin. III. Osmotic stress effects
Struts A. V.1,2,3, Barmasov A. V.1,2, Brown M. F.3
1St. Petersburg State Pediatric Medical University, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3University of Arizona, Tucson, USA
Email: struts@arizona.edu

PDF
We review osmotic stress studies of the G-protein-coupled receptor rhodopsin. Despite the established presence of small amounts of structural water in these receptors, the influence of bulk water on their function remains unknown. Investigations of osmotic stress effects on the GPCR archetype rhodopsin have provided unique data about the role of water in receptor activation. It was discovered that osmolytes shift the rhodopsin equilibrium after photoactivation, either to the active or inactive conformations depending on their molar mass. Experimentally at least 80 water molecules have been found to enter rhodopsin in the transition to the active state. We propose that this influx of water is a necessary condition for receptor activation. If the water movement is blocked, e.g., by large osmolytes or by dehydration, then the receptor does not undergo its functional transition. The results suggest a new model whereby rhodopsin becomes swollen and partially unfolded in the activation mechanism. Water thus acts as a powerful allosteric modulator of functioning for rhodopsin-like receptors. Keywords: G-protein-coupled receptors, membranes, optical spectroscopy, rhodopsin, signal transduction.
  1. A.V. Struts, A.V. Barmasov, M.F. Brown. Opt. Spectrosc. 118, 711 (2015). DOI: 10.1134/S0030400X15050240
  2. A.V. Struts, A.V. Barmasov, M.F. Brown. Opt. Spectrosc. 120, 286 (2016). DOI: 10.1134/S0030400X16010197
  3. N.R. Latorraca, A.J. Venkatakrishnan, R.O. Dror. Chem. Rev. 117, 139 (2017). DOI: 10.1021/acs.chemrev.6b00177
  4. D. Hilger, M. Masureel, B.K. Kobilka. Nat. Struct. Mol. Biol. 25, 4 (2018). DOI:10.1038/s41594-017-0011-7
  5. W.I. Weis, B.K. Kobilka. Annu. Rev. Biochem. 89, 897 (2018). DOI: 10.1146/annurev-biochem-060614-033910
  6. A.J. Venkatakrishnan, A.K. Ma, R. Fonseca, N.R. Latorraca, B. Kelly, R.M. Betz, ... R.O. Dror. Proc. Natl. Acad. Sci. U.S.A. 116, 3288 (2019). DOI: 10.1073/pnas.1809251116
  7. H.-W. Choe, Y.J. Kim, J.H. Park, T. Morizumi, E.F. Pai, N. Kraub, . . . O.P. Ernst. Nature 471, 651 (2011). DOI: 10.1038/nature09789
  8. S.G.F. Rasmussen, H.-J. Choi, J.J. Fung, E. Pardon, P. Casarosa, P.S. Chae, . . . B.K. Kobilka. Nature 469, 175 (2011). DOI: 10.1038/nature09648
  9. Y. Kang, X.E. Zhou, X. Gao, Y. He, W. Liu, A. Ishchenko, . . . H.E. Xu. Nature 523, 561 (2015). DOI: 10.1038/nature14656
  10. U.R. Shrestha, S.M.D.C. Perera, D. Bhowmik, U. Chawla, E. Mamontov, M.F. Brown, X.-Q. Chu. J. Phys. Chem. Lett. 7, 4130 (2016). DOI: 10.1021/acs.jpclett.6b01632
  11. S.M.D.C. Perera, U. Chawla, U.R. Shrestha, D. Bhowmik, A.V. Struts, S. Qian, . . . M.F. Brown. J. Phys. Chem. Lett. 9, 7064 (2018). DOI: 10.1021/acs.jpclett.8b03048
  12. N. Leioatts, B.M. Mertz, K. Martinez-Mayorga, T.D. Romo, M.C. Pitman, S.E. Feller, ... M.F. Brown, Biochemistry 53, 376 (2014). DOI: 10.1021/bi4013947
  13. L.A. Salas-Estrada, N. Leioatts, T.D. Romo, A. Grossfield, Biophys. J. 114, 355 (2018). DOI: 10.1016/j.bpj.2017.11.021
  14. E. Malmerberg, P.H.M. Bovee-Geurts, G. Katona, X. Deupi, D. Arnlund, C. Wickstrand, ... R. Neutze, Sci. Signal. 8, ra26 (2015). DOI: 10.1126/scisignal.2005646
  15. E. Zaitseva, M.F. Brown, R. Vogel, J. Am. Chem. Soc. 132, 4815 (2010). DOI: 10.1021/ja910317a
  16. B. Knierim, K.P. Hofmann, O.P. Ernst, W.L. Hubbell, Proc. Natl. Acad. Sci. U.S.A. 104, 20290 (2007). DOI: 10.1073/pnas.0710393104
  17. M. Mahalingam, K. Martinez-Mayorga, M.F. Brown, R. Vogel, Proc. Natl. Acad. Sci. U.S.A. 105, 17795 (2008). DOI: 10.1073/pnas.0804541105
  18. C. Altenbach, A.K. Kusnetzow, O.P. Ernst, K.P. Hofmann, W.L. Hubbell, Proc. Natl. Acad. Sci. U.S.A. 105, 7439 (2008). DOI: 10.1073/pnas.0802515105
  19. O. Soubias, K. Gawrisch, Biochim. Biophys. Acta 1818, 234 (2012). DOI: 10.1016/j.bbamem.2011.08.034
  20. M.F. Brown, Annu. Rev. Biophys. 46, 379 (2017). DOI: 10.1146/annurev-biophys-070816-033843
  21. S.D.E. Fried, J.W. Lewis, I. Szundi, K. Martinez-Mayorga, M. Mahalingam, R. Vogel, ... M.F. Brown, Biophys. J. 120, 440 (2021). DOI: 10.1016/j.bpj.2020.11.007
  22. Z. Salamon, Y. Wang, M.F. Brown, H.A. Macleod, G. Tollin, Biochemistry 33, 13706 (1994)
  23. Z. Salamon, M.F. Brown, G. Tollin, Trends Biochem. Sci. 24, 213 (1999)
  24. M.F. Colombo, D.C. Rau, V.A. Parsegian, Science 256, 655 (1992). DOI: 10.1126/science.1585178
  25. C. Reid, R.P. Rand, Biophys. J. 72, 1022 (1997). DOI: 10.1016/S0006-3495(97)78754-X
  26. G.D. Dzingeleski, R. Wolfenden, Biochemistry 32, 9143 (1993). DOI: 10.1021/bi00086a020
  27. J. Zimmerberg, F. Benzanilla, V.A. Parsegian, Biophys. J. 57, 1049 (1990). DOI: 10.1016/S0006-3495(90)82623-0
  28. I. Vodanoy, S.M. Bezrukov, V.A. Parsegian, Biophys. J. 65, 2097 (1993). DOI: 10.1016/S0006-3495(93)81245-1
  29. M.D. Rayner, J.G. Starkus, P.C. Ruben, D.A. Alicata, Biophys. J. 61, 96 (1992). DOI: 10.1016/S0006-3495(92)81819-2
  30. J.A. Kornblatt, G. Hui Bon Hoa, Biochemistry 29, 9370 (1990). DOI: 10.1021/bi00492a010
  31. J.Y.A. Lehtonen, K.J. Kinnunen, Biophys. J. 66, 1981 (1994). DOI: 10.1016/s0006-3495(94)80991-9
  32. K.J. Mallikarjunaiah, A. Leftin, J.J. Kinnun, M.J. Justice, A.L. Rogozea, H.I. Petrache, M.F. Brown, Biophys. J. 100, 98 (2011). DOI: 10.1016/j.bpj.2010.11.010
  33. T.R. Molugu, S. Lee, M.F. Brown, Chem. Rev. 117, 12087 (2017). DOI: 10.1021/acs.chemrev.6b00619
  34. J.T. McCown, E. Evans, S. Diehl, H.C. Wiles, Biochemistry 20, 3134 (1981). DOI: 10.1021/bi00514a023
  35. D.C. Mitchell, B.J. Litman, Biochemistry 38, 7617 (1999). DOI: 10.1021/bi990634m
  36. M. Straume, D.C. Mitchell, J.L. Miller, B.J. Litman, Biochemistry 29, 9135 (1990). DOI: 10.1021/bi00491a006
  37. V.A. Parsegian, R.P. Rand, D.C. Rau, Meth. Enzymol. 259, 43 (1995). DOI: 10.1016/0076-6879(95)59039-0
  38. M. Straume, B.J. Litman, Biochemistry 26, 5113 (1987). DOI: 10.1021/bi00390a033
  39. B.J. Litman, D.C. Mitchell, in Biomembranes, A. Lee, Editor. Vol. 2A. pp. 1-32 (Jai Press, Greenwich, CT, 1996)
  40. U. Chawla, S.M.D.C. Perera, S.D.E. Fried, A.R. Eitel, B. Mertz, N. Weerasinghe, ... M.F. Brown, Angew. Chem. Int. Ed. 60, 2288 (2021). DOI: 10.1002/anie.202003342
  41. S.D.E. Fried, K.S.K. Hewage, A.R. Eitel, A.V. Struts, N. Weerasinghe, S.M.D.C. Perera, M.F. Brown, Proc. Natl. Acad. Sci. U.S.A. 119, e2117349119 (2022). DOI: 10.1073/pnas.2117349119
  42. R. Vogel, S. Ludeke, F. Siebert, T.P. Sakmar, A. Hirshfeld, M. Sheves, Biochemistry 45, 1640 (2006). DOI: 10.1021/bi052196r
  43. R. Vogel, M. Mahalingam, S. Ludke, T. Huber, F. Siebert, T.P. Sakmar, J. Mol. Biol. 380, 648 (2008). DOI: 10.1016/j.jmb.2008.05.022
  44. J. Standfuss, E. Zaitseva, M. Mahalingam, R. Vogel, J. Mol. Biol. 380, 145 (2008). DOI: 10.1016/j.jmb.2008.04.055
  45. A.V. Botelho, T. Huber, T.P. Sakmar, M.F. Brown, Biophys. J. 91, 4464 (2006). DOI: 10.1529/biophysj.106.082776
  46. Y. Wang, A.V. Botelho, G.V. Martinez, M.F. Brown, J. Am. Chem. Soc. 124, 7690 (2002). DOI: 10.1021/ja0200488
  47. C.J. Lopez, M.R. Fleissner, Z. Guo, A.K. Kusnetzow, W.L. Hubbell, Protein Sci. 18, 1637 (2009). DOI: 10.1002%2Fpro.180
  48. K. Palczewski, T. Kumasaka, T. Hori, C.A. Behnke, H. Motoshima, B.A. Fox, ... M. Miyano, Science 289, 739 (2000). DOI: 10.1126/science.289.5480.739
  49. T.E. Angel, S. Gupta, B. Jastrzebska, K. Palczewski, M.R. Chance, Proc. Natl. Acad. Sci. U.S.A. 106, 14367 (2009). DOI: 10.1073/pnas.0901074106
  50. A. Sandoval, S. Eichler, S. Madathil, P.J. Reeves, K. Fahmy, R.A. Bockmann, Biophys. J. 111, 79 (2016). DOI: 10.1016/j.bpj.2016.06.004
  51. I.A. Shkel, D.B. Knowles, M.T. Record Jr., Biopolymers 103, 517 (2015). DOI: 10.1002/bip.22662
  52. U. Chawla, S.M.D.C. Perera, A.V. Struts, M.C. Pitman, M.F. Brown, Biophys. J. 110, 83a (2016). DOI: 10.1016/j.bpj.2015.11.508
  53. A.A. Lamola, T. Yamane, A. Zipp, Biochemistry 13, 738 (1974). DOI: 10.1021/bi00701a016
  54. D.R. Martin, D.V. Matyushov, J. Phys. Chem. Lett. 6, 407 (2015). DOI: 10.1021/jz5025433

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru