Kinetics of luminescence decay of nanocrystals: physical models and approximation by a sum of three exponential functions
Bodunov E. N. 1
1Emperor Alexander I St. Petersburg State Transport University, St. Petersburg, Russia
Email: evgeny.bodunov@inbox.ru

PDF
The measurement of the kinetics of luminescence decay of nanocrystals (NCs) - quantum dots (QDs), nanowires, nanoplates and quantum rings - is an important tool for studying the photodynamics of their excited states, that allows identifying the type and number of traps for charge carriers (electrons, holes) or acceptors of excitation energy (molecules, other QDs) located on the surface or near the NCs, as well as to estimate the energy of traps and to determine the mechanism of transfer of the energy of electronic excitation from the NCs to acceptors. Usually, the kinetics of luminescence decay is approximated by a sum of two or three exponential functions. In this case, the fitting parameters are the amplitudes and decay times of the exponential components. This paper analyzes the experimental conditions under which such an approximation has a clear physical meaning (long-range nonradiative energy transfer, contact quenching of luminescence, reversible trapping of charge carriers), and establishes a relationship between the fitting parameters. Keywords: nanocrystals, kinetics of luminescence decay, approximation by a sum of three exponential functions.
  1. R. Koole, B. Luigjes, M. Tachiya, R. Pool, T.J.H. Vlugt, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh. J. Phys. Chem. C, 111, 11208 (2007). DOI: 10.1021/jp072407x
  2. S. Sadhu, M. Tachiya, A. Patra. J. Phys. Chem. C, 113 (45), 19488 (2009). DOI: 10.1021/jp906160z
  3. E.N. Bodunov, V.V. Danilov, A.S. Panfutova, A.L. Simoes Gamboa. Ann. Phys., 528, 272 (2016). DOI: 10.1002/andp.201500350
  4. E.N. Bodunov, Yu.A. Antonov, A.L. Simoes Gamboa. J. Chem. Phys., 146, 114102 (2017). DOI: 10.1063/1.4978396
  5. E.N. Bodunov, A.L. Simoes Gamboa. J. Phys. Chem. C, 122, 10637 (2018). DOI: 10.1021/acs.jpcc.8b02779
  6. E.N. Bodunov, A.L. Simoes Gamboa. Semiconductors, 52 (5), 587 (2018). DOI: 10.1134/S1063782618050044
  7. E.N. Bodunov, A.L. Simoes Gamboa. J. Phys. Chem. C, 123, 25515 (2019). DOI: 10.1021/acs.jpcc.9b07619
  8. E.N. Bodunov, A.L. Simoes Gamboa. Semiconductors, 53 (16), 2133 (2019). DOI: 10.1134/S1063782619120078
  9. A.L. Simoes Gamboa, E.N. Bodunov. 2022 International Conference Laser Optics (ICLO), IEEE (2022). DOI: 10.1109/ICLO54117.2022.9839822
  10. Al.L. Efros. Phys. Rev. B, 46, 7448 (1992). DOI: DOI: 10.1103/PhysRevB.46.7448
  11. Al.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, M. Bawendi. Phys. Rev. B, 54, 4843 (1996). DOI: 10.1103/PhysRevB.54.4843
  12. P.C. Sercel, Al.L. Efros. Nano Lett., 18, 4061 (2018). DOI: 10.1021/acs.nanolett.8b01980
  13. V.I. Klimov. J. Phys. Chem. B, 110, 16827 (2006). DOI: 10.1021/jp0615959
  14. G. Boulon. J. Physique, 32 (4), 333 (1971). DOI: 10.1051/jphys:01971003204033300
  15. C. de Mello Donea, M. Bode, A. Meijerink. Phys. Rev. B, 74, 085320 (2006). DOI: 101103/PhysRevB.74. 085320
  16. O. Labeau, P. Tamarat, B. Lounis. Phys. Rev. Lett., 90 (25), 257404 (2003). DOI: 10.1103/PhysRevLett.90.257404
  17. V.L. Ermolaev. Opt. Spectrosc., 125 (2), 256 (2018). DOI: 10.1134/S0030400X18080052
  18. M. Achermann, M.A. Petruska, S.A. Crooker, V.I. Klimov. J. Phys. Chem. B, 107, 13782 (2003). DOI: 10.1021/JP036497R
  19. Th. Forster. Ann. Phys. (Leipzig), 2, 55 (1948). DOI: 10.1002/andp.19484370105
  20. Th. Forster. Z. Naturforsch., 4a, 321 (1949). https://zfn.mpdl.mpg.de/data/Reihe_A/4/ZNA-1949-4a-0321.pdf
  21. D.L. Dexter. J. Chem. Phys., 21, 836 (1953). DOI: 10.1063/1.1699044
  22. M.N. Berberan-Santos, E.N. Bodunov, B. Valeur. Chem. Phys., 315, 171 (2005). DOI: 10.1016/j.chemphys.2005.04.006
  23. J. Xiao, Y. Liu, V. Steinmetz, M. Cav glar, J. Mc Hugh, T. Baikie, N. Gauriot, M. Nguyen, E. Ruggeri, Z. Andaji-Garmaroudi, S.D. Stranks, L. Legrand, T. Barisien, R.H. Friend, N.C. Greenham, A. Rao, R. Pandya. ACS Nano, 14, 14740 (2020). DOI: 10.1021/acsnano.0c01752
  24. O. Stroyuk, A. Raevskaya, F. Spranger, N. Gaponik, D.R.T. Zahn. ChemPhysChem., 20 (12), 1640 (2019). DOI: 10.1002/cphc.201900088
  25. J. Klafter, A. Blumen. J. Chem. Phys., 80, 875 (1984). DOI: 10.1063/1.446743
  26. M.N. Berberan-Santos, E.N. Bodunov, J.M.G. Martinho. Opt. Spectrosc., 81 (2), 217 (1996)
  27. M.N. Berberan-Santos, E.N. Bodunov, B. Valeur. Chem. Phys., 315, 171 (2005). DOI: 10.1016/j.chemphys.2005.04.006
  28. M.N. Berberan-Santos, E.N. Bodunov, B. Valeur. In: Fluorescence of Supermolecules, Polymers and Nanosystems., ed. by M.N. Berberan-Santos. Springer Ser. on Fluorescence (Springer-Verlag, Berlin, Heidelberg, 2008), vol. 4, p. 67. DOI: 10.1007/4243_2007_001
  29. A.S. Kulagina, A.I. Khrebtov, R.R. Reznik, E.V. Ubyivovk, A.P. Litvin, I.D. Skurlov, G.E. Cirlin, E.N. Bodunov, V.V. Danilov. Opt. Spectrosc., 128 (1), 119 (2020). DOI: 10.1134/S0030400X20010129
  30. A.I. Khrebtov, A.S. Kulagina, V.V. Danilov, E.S. Gromova, I.D. Skurlov, A.P. Litvin, R.R. Reznik, I.V. Shtrom, G.E. Girlin. Semiconductors, 54, 1141 (2020). DOI: 10.1134/S1063782620090158
  31. H. Leng, J. Loy, V. Amin, E.A. Weiss, M. Pelton. ACS Energy Lett., 1, 9 (2016). DOI: 10.1021/acsenergylett.6b00047
  32. M. Tachiya. Chem. Phys. Lett., 33 (2), 289 (1975). DOI: 10.1016/0009-2614(75)80158-8
  33. P.P. Infelta, M. Gratzel. J. Chem. Phys., 70 (1), 179 (1979). DOI: 10.1063/1.437218
  34. E.N. Bodunov, M.N. Berberan-Santos, J.M.G. Martinho. Chem. Phys. Lett., 297, 419 (1998). DOI: 10.1016/S0009-2614(98)01151-8
  35. E.N. Bodunov. Opt. Spectrosc., 129 (2), 205 (2021). DOI: 10.1134/S0030400X2102003X

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru