Kinetics of luminescence decay of nanocrystals: physical models and approximation by a sum of three exponential functions
Bodunov E. N.
1
1Emperor Alexander I St. Petersburg State Transport University, St. Petersburg, Russia
Email: evgeny.bodunov@inbox.ru
The measurement of the kinetics of luminescence decay of nanocrystals (NCs) - quantum dots (QDs), nanowires, nanoplates and quantum rings - is an important tool for studying the photodynamics of their excited states, that allows identifying the type and number of traps for charge carriers (electrons, holes) or acceptors of excitation energy (molecules, other QDs) located on the surface or near the NCs, as well as to estimate the energy of traps and to determine the mechanism of transfer of the energy of electronic excitation from the NCs to acceptors. Usually, the kinetics of luminescence decay is approximated by a sum of two or three exponential functions. In this case, the fitting parameters are the amplitudes and decay times of the exponential components. This paper analyzes the experimental conditions under which such an approximation has a clear physical meaning (long-range nonradiative energy transfer, contact quenching of luminescence, reversible trapping of charge carriers), and establishes a relationship between the fitting parameters. Keywords: nanocrystals, kinetics of luminescence decay, approximation by a sum of three exponential functions.
- R. Koole, B. Luigjes, M. Tachiya, R. Pool, T.J.H. Vlugt, C. de Mello Donega, A. Meijerink, D. Vanmaekelbergh. J. Phys. Chem. C, 111, 11208 (2007). DOI: 10.1021/jp072407x
- S. Sadhu, M. Tachiya, A. Patra. J. Phys. Chem. C, 113 (45), 19488 (2009). DOI: 10.1021/jp906160z
- E.N. Bodunov, V.V. Danilov, A.S. Panfutova, A.L. Simoes Gamboa. Ann. Phys., 528, 272 (2016). DOI: 10.1002/andp.201500350
- E.N. Bodunov, Yu.A. Antonov, A.L. Simoes Gamboa. J. Chem. Phys., 146, 114102 (2017). DOI: 10.1063/1.4978396
- E.N. Bodunov, A.L. Simoes Gamboa. J. Phys. Chem. C, 122, 10637 (2018). DOI: 10.1021/acs.jpcc.8b02779
- E.N. Bodunov, A.L. Simoes Gamboa. Semiconductors, 52 (5), 587 (2018). DOI: 10.1134/S1063782618050044
- E.N. Bodunov, A.L. Simoes Gamboa. J. Phys. Chem. C, 123, 25515 (2019). DOI: 10.1021/acs.jpcc.9b07619
- E.N. Bodunov, A.L. Simoes Gamboa. Semiconductors, 53 (16), 2133 (2019). DOI: 10.1134/S1063782619120078
- A.L. Simoes Gamboa, E.N. Bodunov. 2022 International Conference Laser Optics (ICLO), IEEE (2022). DOI: 10.1109/ICLO54117.2022.9839822
- Al.L. Efros. Phys. Rev. B, 46, 7448 (1992). DOI: DOI: 10.1103/PhysRevB.46.7448
- Al.L. Efros, M. Rosen, M. Kuno, M. Nirmal, D.J. Norris, M. Bawendi. Phys. Rev. B, 54, 4843 (1996). DOI: 10.1103/PhysRevB.54.4843
- P.C. Sercel, Al.L. Efros. Nano Lett., 18, 4061 (2018). DOI: 10.1021/acs.nanolett.8b01980
- V.I. Klimov. J. Phys. Chem. B, 110, 16827 (2006). DOI: 10.1021/jp0615959
- G. Boulon. J. Physique, 32 (4), 333 (1971). DOI: 10.1051/jphys:01971003204033300
- C. de Mello Donea, M. Bode, A. Meijerink. Phys. Rev. B, 74, 085320 (2006). DOI: 101103/PhysRevB.74. 085320
- O. Labeau, P. Tamarat, B. Lounis. Phys. Rev. Lett., 90 (25), 257404 (2003). DOI: 10.1103/PhysRevLett.90.257404
- V.L. Ermolaev. Opt. Spectrosc., 125 (2), 256 (2018). DOI: 10.1134/S0030400X18080052
- M. Achermann, M.A. Petruska, S.A. Crooker, V.I. Klimov. J. Phys. Chem. B, 107, 13782 (2003). DOI: 10.1021/JP036497R
- Th. Forster. Ann. Phys. (Leipzig), 2, 55 (1948). DOI: 10.1002/andp.19484370105
- Th. Forster. Z. Naturforsch., 4a, 321 (1949). https://zfn.mpdl.mpg.de/data/Reihe_A/4/ZNA-1949-4a-0321.pdf
- D.L. Dexter. J. Chem. Phys., 21, 836 (1953). DOI: 10.1063/1.1699044
- M.N. Berberan-Santos, E.N. Bodunov, B. Valeur. Chem. Phys., 315, 171 (2005). DOI: 10.1016/j.chemphys.2005.04.006
- J. Xiao, Y. Liu, V. Steinmetz, M. Cav glar, J. Mc Hugh, T. Baikie, N. Gauriot, M. Nguyen, E. Ruggeri, Z. Andaji-Garmaroudi, S.D. Stranks, L. Legrand, T. Barisien, R.H. Friend, N.C. Greenham, A. Rao, R. Pandya. ACS Nano, 14, 14740 (2020). DOI: 10.1021/acsnano.0c01752
- O. Stroyuk, A. Raevskaya, F. Spranger, N. Gaponik, D.R.T. Zahn. ChemPhysChem., 20 (12), 1640 (2019). DOI: 10.1002/cphc.201900088
- J. Klafter, A. Blumen. J. Chem. Phys., 80, 875 (1984). DOI: 10.1063/1.446743
- M.N. Berberan-Santos, E.N. Bodunov, J.M.G. Martinho. Opt. Spectrosc., 81 (2), 217 (1996)
- M.N. Berberan-Santos, E.N. Bodunov, B. Valeur. Chem. Phys., 315, 171 (2005). DOI: 10.1016/j.chemphys.2005.04.006
- M.N. Berberan-Santos, E.N. Bodunov, B. Valeur. In: Fluorescence of Supermolecules, Polymers and Nanosystems., ed. by M.N. Berberan-Santos. Springer Ser. on Fluorescence (Springer-Verlag, Berlin, Heidelberg, 2008), vol. 4, p. 67. DOI: 10.1007/4243_2007_001
- A.S. Kulagina, A.I. Khrebtov, R.R. Reznik, E.V. Ubyivovk, A.P. Litvin, I.D. Skurlov, G.E. Cirlin, E.N. Bodunov, V.V. Danilov. Opt. Spectrosc., 128 (1), 119 (2020). DOI: 10.1134/S0030400X20010129
- A.I. Khrebtov, A.S. Kulagina, V.V. Danilov, E.S. Gromova, I.D. Skurlov, A.P. Litvin, R.R. Reznik, I.V. Shtrom, G.E. Girlin. Semiconductors, 54, 1141 (2020). DOI: 10.1134/S1063782620090158
- H. Leng, J. Loy, V. Amin, E.A. Weiss, M. Pelton. ACS Energy Lett., 1, 9 (2016). DOI: 10.1021/acsenergylett.6b00047
- M. Tachiya. Chem. Phys. Lett., 33 (2), 289 (1975). DOI: 10.1016/0009-2614(75)80158-8
- P.P. Infelta, M. Gratzel. J. Chem. Phys., 70 (1), 179 (1979). DOI: 10.1063/1.437218
- E.N. Bodunov, M.N. Berberan-Santos, J.M.G. Martinho. Chem. Phys. Lett., 297, 419 (1998). DOI: 10.1016/S0009-2614(98)01151-8
- E.N. Bodunov. Opt. Spectrosc., 129 (2), 205 (2021). DOI: 10.1134/S0030400X2102003X
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.