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Kinetics of luminescence decay of nanocrystals: physical models and

approximation by a sum of three exponential functions
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The measurement of the kinetics of luminescence decay of nanocrystals (NCs) — quantum dots (QDs),
nanowires, nanoplates and quantum rings — is an important tool for studying the photodynamics of their excited

states, that allows identifying the type and number of traps for charge carriers (electrons, holes) or acceptors

of excitation energy (molecules, other QDs) located on the surface or near the NCs, as well as to estimate the

energy of traps and to determine the mechanism of transfer of the energy of electronic excitation from the NCs

to acceptors. Usually, the kinetics of luminescence decay is approximated by a sum of two or three exponential

functions. In this case, the fitting parameters are the amplitudes and decay times of the exponential components.

This paper analyzes the experimental conditions under which such an approximation has a clear physical meaning

(long-range nonradiative energy transfer, contact quenching of luminescence, reversible trapping of charge carriers),
and establishes a relationship between the fitting parameters.
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Introduction

The kinetics of luminescence decay of nanocrystals

(NCs) — quantum dots (QDs), nanowires, nanoplates and

quantum rings — contains important information about the

structure of the electronic levels of the NCs and about the

interaction mechanisms of (i) NCs with acceptors of the

energy of electronic excitation and (ii) of charge carriers

(electrons, holes) in NCs with traps. The analysis of the

kinetics of luminescence decay makes it possible to identify

the type and number of charge carrier traps or excitation

energy acceptors (molecules, QDs) located on or near the

surface of the NCs, as well as to estimate the energy of

the traps and to determine the mechanism of electronic

excitation energy transfer from NCs to acceptors [1–9].

The normalized kinetics of luminescence decay of an

ensemble of QDs I(t) (I(0) = 1) is usually not exponential,

and it is often approximated by a sum of exponential

functions, for example three components:

I(t) = A1e
−t/τ1 + A2e

−t/τ2 + A3e
−t/τ3 , (1)

where the fitting parameters are the decay times

τ1, τ2, τ3 (τ1 > τ2 > τ3) and the amplitudes A1, A2 and

A3. Taking into account the normalization condition

(A1 + A2 + A3 = 1) in equation (1) there are five inde-

pendent fitting parameters (three decay times and two

amplitudes).

We note that the above representation (1) of the function

I(t) in the form of a series is actually its discrete Laplace

transform. It is clear that such an approximation of I(t)

is the more accurate the more terms there are in the

series. In this connection, the question arises about the

physical meaning of the fitting parameters (decay times and

amplitudes).

The approximation of the kinetics of the luminescence

decay of a QD ensemble by a sum (1) is justified, for

example, in the case of low temperatures. Indeed, according

to the generally accepted QD model [10–13], the electronic

structure of the QDs can be characterized by three levels:

the ground state and two closely spaced excited state

levels (the upper bright state and the lower dark state).
The transition from the dark state to the ground state is

forbidden, so that the radiative lifetime of the dark state is

much longer than the radiative lifetime of the bright state

(corresponding to the transition from the bright state to the

ground state). The QD is excited into the bright state. As a

result of the electron-vibrational interaction, there is a rapid

redistribution of excitation between the bright and dark

states. At low temperatures, when the energy difference

between the QD bright and dark states is much greater

than kBT (kB — Boltzmann constant, T — temperature),
the kinetics of luminescence decay of the QD ensemble is

described by a sum of two exponential components [14–
16]. The component with a short decay time corresponds

to QD luminescence due to a decrease in the population

of the bright state as a result of the electron transition to

the ground and dark states, and the component with a

long decay time is due to the return of the excitation from

the dark state to the bright state and subsequent radiative

transition to the ground state (delayed luminescence [17]).

96



Kinetics of luminescence decay of nanocrystals: physical models and approximation... 97

At room temperatures (when kBT is much greater

than the energy difference between the bright and dark

states), the populations of the bright and dark states are in

equilibrium as a result of the electron-vibrational interaction.

The kinetics of the QD luminescence decay becomes single-

exponential, with the decay time equal to twice the lifetime

of the bright state [3,10,13,16].
However, experimental studies show that the kinetics

of the luminescence decay of a QD ensemble often

remains non-exponential even at high temperatures. In this

case, the approximation of I(t) by a sum of exponential

components (1) acquires physical meaning only if a specific

physical model of the interaction of QDs with energy

acceptors or traps is assumed. In this paper, which has

a scientific and methodological nature, several such models

are discussed.

Long-range energy transfer

Let us assume non-radiative energy transfer (Förster
resonance energy transfer — FRET) from QDs to acceptors.

In the absence of FRET, according to the theory, the kinetics

of QD luminescence decay is exponential with time τ . We

consider the critical radius of energy transfer R0 (Förster
radius) to be small, and therefore it is sufficient to take into

account FRET only to acceptors located in the first (at a
distance R1) and second (at a distance R2) QD coordination

spheres (R1 < R2) [18].
Within the multipole FRET mechanism, the rates of

energy transfer k1 and k2 to acceptors in the first and second

QD coordination spheres, respectively, are equal to

k1 =
1

τ

(

R0

R1

)s

and k2 =
1

τ

(

R0

R2

)s

. (2)

Here the parameter s is determined by the mechanism

of interaction of QD and acceptors and is equal to 6, 8

or 10, respectively, for dipole-dipole, dipole-quadrupole or

quadrupole-quadrupole interactions [19–21].
Under these assumptions, the kinetics of the lumines-

cence decay of the QD ensemble will be described by a sum

of three exponential components (1) with the parameters

τ1 > τ2 > τ3 given by

1/τ1 = 1/τ , 1/τ2 = 1/τ + k2, 1/τ3 = 1/τ + k1. (3)

The amplitudes A1, A2 and A3 have the meaning, respec-

tively, of the QD fractions that do not have acceptors in

the nearest coordination spheres (τ1 = τ , the longest decay

time), having an acceptor only in the second coordination

sphere (τ2) and only in the first coordination sphere (τ3, the
shortest decay time).
We note that in this model, according to formula (3),

there is the following relationship between the times τ1, τ2
and τ3 and the radii of the coordination spheres R1 and R2:

1/τ2 − 1/τ1

1/τ3 − 1/τ1
=

k2

k1

=

(

R1

R2

)s

. (4)

This relationship (4) can be estimated by knowing the

average size of the QDs and the structure of the QD

environment.

Taking into account the normalization condition and

equations (3) and (4) the number of fitting parameters in

equation (1) decreases to four (A1, A2, τ1, k1).

If the critical radius R0 is large (for example, R0 > R2)
and it is necessary to take into account FRET to acceptors

located at sufficiently large distances (larger than the

size of the second coordination sphere), then a stretched

exponential function should be used to approximate the

kinetics of luminescence decay [3,4,6,7,9,22–24]

I(t) = exp
(

−
t
τ
− a(t/τ )β

)

. (5)

Here β = d/s , d is the dimension of the medium and

the parameter a is determined by the concentration of

acceptor molecules and the critical radius of energy trans-

fer R0 [3,4,20,25–28]. When approximating the experi-

mental kinetics of luminescence decay by function (5),
the number of fitting parameters is reduced (compared

with (1)) to three (τ , β and a).

Contact irreversible trapping of charge
carriers

Another model is contact irreversible trapping of charge

carriers (electrons or holes) in NC by traps or FRET from

NCs (acting as energy donors) to acceptors, occurring

only at the closest possible distance between NC and the

acceptor (i.e. they are in
”
contact“). Let the number of traps

(or acceptors) per NC on average be small, and let it be

sufficient to take into account a maximum of two traps (two
acceptors). Let the rate of trapping of an electron (hole)
by one trap or the rate of energy transfer to one acceptor

be equal to k1 and the same for all traps or acceptors (i.e.
traps or acceptors are identical). Then the trapping rate

of an electron (hole) by two traps or the rate of energy

transfer to two acceptors will be equal to 2k1. Let us also

assume that in the absence of energy transfer, the kinetics of

NC luminescence decay is exponential with decay time τ .

In this case, the kinetics of the luminescence decay of

the NC ensemble can also be approximated by a sum

of three exponential components (1) with the parameters

τ1 > τ2 > τ3 given by

1/τ1 = 1/τ , 1/τ2 = 1/τ + k1, 1/τ3 = 1/τ + 2k1.

(6)

The amplitudes A1, A2 and A3 in this case have the

meaning, respectively, of the fractions of NC that do

not have traps or acceptors at the minimum distance

(τ1 = τ , the longest decay time) and having only one

(1/τ2 = 1/τ + k1) or two traps (two acceptors) at this

distance (1/τ3 = 1/τ + 2k1, τ3 is the shortest decay time).
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According to (6), the following relationship holds be-

tween the times τ1, τ2 and τ3:

1/τ2 − 1/τ1

1/τ3 − 1/τ1
=

1

2
. (7)

In this case, the number of fitting parameters is four (A1,

A2, τ , k1).
If it is not possible to limit ourselves to taking into ac-

count only two traps (acceptors) per NC, then the function

used to approximate the kinetics of the luminescence decay

of the NC ensemble should be [1,2,4–7,29–31]

I(t) = exp
⌈

−
t
τ
− N̄

(

1− exp
(

−K1

t
τ

))⌉

. (8)

In formula (8) N̄ is the average number of identical traps

(acceptors) per NC, K1 = k1τ , and a Poisson distribution

of traps over NC [32–34] is assumed. When approximating

I(t) by the function (8), the number of fitting parameters

decreases to (τ , K1, N̄).

Contact reversible trapping of charge
carriers by identical traps

The next model is contact reversible trapping of charge

carriers in NCs (electrons or holes) by traps. Let the

number of traps per NC on average be much less than

one. Then, in the kinetics of the luminescence decay of

the NC ensemble, it is sufficient to take into account only

NCs that do not have traps and NCs that have one trap.

Let the trapping rate of an electron (hole) by a trap be k1,

and the rate of return of the charge carrier from the trap

to the NC be k2. We assume that k2 ≪ k1. Let us also

assume that in the absence of trapping of charge carriers by

traps, the kinetics of NC luminescence decay is exponential

with decay time τ . In this approximation, the kinetics of

luminescence decay I(t) will be described by a sum of three

exponential components (1) [7–9]

I(t) =A1

(

k2

1/τ + k1 + k2

e−t/τ1

+
1/τ + k1

1/τ + k1 + k2

e−t/τ3

)

+ A2e−t/τ2 (9)

with parameters τ1 > τ2 > τ3 given by

1

τ1
=

k2

1/τ + k1

1

τ
,

1

τ2
=

1

τ
,

1

τ3
=

1

τ
+ k1. (10)

The term in (9) with amplitude A2 is the contribution to

luminescence from NCs without traps (τ2 = τ ). The two

terms in (9) with a total amplitude of A1(A1 + A2 = 1) —
luminescence of NCs having one trap. The first term in

parentheses with the longest decay time τ1 characterizes the

delayed luminescence of NCs (due to the return of charge

carriers from the trap to NC and subsequent luminescence

of NC). Taking into account the normalization condition

A1 + A2 = 1 in equation (9) there are four fitting parameters

(A1, τ , k1, k2).

If it is not possible to limit ourselves to taking into

account only one trap per NC, then to approximate I(t),
the following formula should be used [7–9]

I(t) =
∞
∑

0

e−N̄ N̄N

N!

(

Ae−α1t/τ + Be−α2t/τ
)

. (11)

When obtaining equation (11), a Poisson distribution

of identical traps (i.e. traps having the same values

of k1, k2) [32–34] per NC was assumed,

α1 =
1

2
(1 + NK1 + K2) +

√

1

4
(1 + NK1 + K2)2 − K2,

(12)

α2 =
1

2
(1 + NK1 + K2) −

√

1

4
(1 + NK1 + K2)2 − K2,

(13)

A =
1 + NK1 − α2

α1 − α2

, B = 1− A,

K1 = k1τ , K2 = k2τ . (14)

In equations (11)−(14) there are four fitting parameters

(τ , K1, K2, N̄). These equations were used to approximate

the NC kinetics of luminescence decay in [7–9,23,30].

Thus, in the three experimental situations considered

in this paper, the approximation of the kinetics of lumi-

nescence decay of the NC ensemble by a sum of three

exponents (1) acquires a clear physical meaning.

Conclusion

Various experimental conditions (leading to long-range

nonradiative energy transfer, contact quenching of lumines-

cence, reversible trapping of charge carriers) have been

analyzed, under which the non-exponential kinetics of

luminescence decay of the NC ensemble (QDs, nanowires,

nanoplates, quantum rings) at room temperature can be

modeled by a sum of exponential functions. It has been

shown what the quantitative relationship between the fitting

parameters (the decay times of the exponential components

and their amplitudes) should be. This allows us to reduce

their number.

We note that the approximation of the kinetics of the NC

luminescence decay by a sum of exponential functions is

also useful for the analysis of sensitized luminescence of

acceptors [35], to which energy is transferred from NCs.
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