Phase effects at stimulated Brillouin scattering
Kasumova R. J. 1, Kerimli N. V. 1, Safarova G. A.2
1Baku State University, Physics Department, Baku, Azerbaijan
2Baku State University, Institute for Physical Problems, Baku, Azerbaijan
Email: renajkasumova@gmail.com

PDF
In the study of stimulated Brillouin scattering (SBS) in the constant intensity approximation, the spatial behavior of the intensity of the Stokes scattering wave in a medium was investigated. It was found that as a result of nonlinear interaction of waves, the period of spatial beats changes. The intensity of the Stokes scattering component is considered as a function of the phase mismatch, pump and acoustic wave intensities. It is found that the efficiency of the scattering of the backward Stokes wave is affected by the total length of the nonlinear medium. According to the analytical expressions obtained in this work, the choice of the optimal parameters of the problem makes it possible to implement the regime of efficient generation of the Stokes scattering component in SBS. The process of generation and amplification of the Stokes scattering component is compared with experiment. By varying the pump intensity, one can control and manipulate the intensity of the output radiation of the Stokes component. Keywords: SBS, backward Stokes scattering wave, constant intensity approximation.
  1. D. Strickland, G. Mourou. Opt. Commun., 55, 447 (1985). DOI: 10.1016 /0030-4018(85)90151-8
  2. Yue Wu, J. Sawyer, Zhili Zhang, M.N. Shneider, A.A. Viggiano. Appl. Phys. Lett., 100, 114108 (2012). DOI: 10.1063/1.3695064
  3. Nageswara Lalam, Wai Pang Ng, Xuewu Dai, Qiang Wu, Yong Qing Fu. Optics and Laser Technology (PHOTOPTICS), 333 (2016). DOI: 10.5220/0005842803330340
  4. V.Yu. Golyshev, E.A. Zhukov, I.E. Samartsev, D.G. Slepov. Technical Physics, 74 (7), 66 (2004)
  5. Yibo Zhong, Haoyu Wang, Changjian Ke, Zi Liang, Deming Liu. Optics Express, 29 (19), 30307 (2021). DOI: 10.1364/OE.434008
  6. Z. Guo, C. Ke, C. Xing, Y. Zhong, G. Yin, D. Liu. IEEE Photonics J., 9 (6), 6102711 (2017). DOI: 10.1109/JPHOT.2017.2767679
  7. Z. Bai, H. Yuan, Z. Liu, P. Xu, Q. Gao, R. J. Williams, O. Kitzler, R.P.Mildren, Y. Wang, Z.Lu. Optical Materials, 75, 626 (2018). DOI: 10.1016/j.optmat.2017.10.035
  8. Y.R. Shen. The principles of nonlinear optics (A Wiley Inter sciences Publication, NY., 2002), 576 p
  9. S.A. Dvinin, D.K. Solikhov, Sh.S. Nurulhakov. Moscow University Physics Bulletin, 72 (4), 345 (2017)
  10. A.A. Andreev, A.N. Sutyagin. Quantum Electronics, 24, 155 (1997)
  11. G. Lehmann, K.H. Spatschek. Phys. Plasmas, 22, 043105 (2015). DOI: org/10.1063/1.5079810
  12. V.V. Kuzmin. Proceedings of the Physical Institute of the USSR Academy of Sciences, 207, 3-39 (1991)
  13. N. Blombergen. Nonlinear Optics (W.A. Benjamin, Inc. New York-Amsterdam, 1965), 424 p
  14. R.H. Pantel, H.E. Puhoff. Fundamentals of Quantum Electronics (John Wiley and Sons. Inc. New York, 1969), 384 p
  15. V.I. Bespalov, E.L. Bubis, S.N. Kulagina, V.G. Manishin, A.Z. Matveev, G.A. Pasmanik, P.S. Razenshtein, A.A. Shilov. Sov. J. Quantum. Electron., 12 (12), 1544 (1982). DOI: 10.1070/QE1982v012n12ABEH006278
  16. M. Maier. Phys. Rev., 166, 113 (1968). DOI: 10.1103/PhysRev.166.113
  17. G. Agrawal. Nonlinear Fiber Optics, 4th ed. (Academic Press, NY., 2007)
  18. W.M. Tolles, J.W. Nibler, J.R. McDonald, A.B. Harvey. Appl. Spectrosc., 31 (4), 253 (1977)
  19. D.A. Akimov, S.O. Konorov, M.V. Alfimov, A.A. Ivanov, V.I. Beloglazov, N.B. Skibina, A.B. Fedotov, D.A. Sidorov-Biryukov, A.N. Petrov, A.M. Zheltikov. Quantum Electron., 34 (5), 473 (2004). DOI: 10.1070/QE2004v034n05ABEH00 2706
  20. N. Vermeulen, C. Debaes, H. Thienpont. IEEE J. Quantum Electronics, 44 (12), 1248 (2009). DOI: 10.1117/2.1200903.1541
  21. Z.A. Tagiev, A.S. Chirkin. Sov. Phys. JETP, 46 (4), 669 1977. DOI: 10.1007/BF00938649
  22. Z.H. Tagiev, R.J. Kasumova, R.A. Salmanova, N.V. Kerimova. J. Opt. B: Quantum Semiclas. Opt., 3, 84 (2001)
  23. R.J. Kasumova. Applied Optics, 40 (30), 5517 (2001). DOI: 10.1364/AO.40.005517
  24. R.J. Kasumova. J. Appl. Spectrosc., 68 (5), 577 (2001). DOI: 10.1023/A:1013277413420
  25. R.J. Kasumova, Z.H. Tagiyev, Sh.Sh. Amirov, Sh.A. Shamilova, G.A. Safarova. J. Russian Laser Research, 38 (4), 211 (2017). DOI: 1071-2836/17/3804-00211
  26. R. Boyd. Nonlinear Optics (Academic Press, 2008), 640 p
  27. D.V. Sizmin. Nelinaynaya optika (SarFTI, Sarov, 2015), 147 p. (in Russian)
  28. R.J. Kasumova. Superlattices and Microstructures, 121, 86 (2018). DOI: 10.1016/j.spmi.2018.07.013
  29. R.J. Kasumova, N.V. Kerimli, A.R. Ahmadova, G.A. Safarova. News of Baku University, 1, 47 (2020)
  30. P.V. Malyneva, A.S. Trushin. Technical Physics Letters, 41 (8), 35 (2015)
  31. V.A. Burov, V.B. Voloshinov, K.V. Dmitriev, N.V. Polikarpova. J. Physics Uspekhi, 54 (11), 1165 (2011). DOI: 10.3367/UFNe.0181.201111i.1205
  32. V.G. Voronin, O.E. Naniy. Osnovy nelineinoi volokonnoi optiki (Universitetskaya kniga, Moscow, 2011), 126 p. (in Russian).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru