On solution of the light scattering problem for a spheroid in the TM and TE modes when using spheroidal bases
Farafonov V. G.
1, Il'in V. B.
1,2,3, Turichina D.G.
2,31Saint-Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
2St. Petersburg State University, St. Petersburg, Russia
3Pulkovo Astronomical Observatory, Russian Academy of Sciences, St. Petersburg, Russia
Email: far@aanet.ru, ilin55@yandex.ru, t.dasha5@mail.ru
Light scattering by spheroids plays an important role in various applications. The most efficient algorithm to calculate the optical properties of spheroids implies the field expansions in a special spheroidal basis, but its application is limited by three problems - difficulties of computations of the spheroidal functions of complex argument, the absent transition to the standard T-matrix, and loss of precision in complicated calculations for one case of the incident radiation polarization (TE mode). The first two difficulties have been recently overcome to a large extent, and in this work we solve the last problem - by using T-matrix transformations, we find the way of expressing the TE mode solution through the more simple and stable TM mode solution. Numerical calculations performed by us demonstrate that the suggested approach improves the result accuracy by several orders, accelerates solution in several times and significantly extends its applicability range (up to the diffraction parameters exceeding 100). Keywords: light scattering, T-matrix, spheroidal scatterers.
- A. Sihvola. J. Nanomater., 2007, 45090 (2007). DOI: 10.1155/2007/45090
- Thermo Fisher Scientific [Electronic source]. URL: https://www.thermofisher.com /ru/ru/home/life-science/cell-culture/organoids-spheroids-3d-cell-culture.html
- R. Hogg. KONA Powder Part. J., 32, 227 (2015). DOI: 10.14356/kona.2015014
- M.M. Bukharin, V.Ya. Pecherkin, A.K. Ospanova et al. Sci. Rep., 12, 7997 (2022). DOI: 10.1038/s41598-022-11733-4
- O. Dubovik, A. Sinyuk, T. Lapyonok et al. J. Geophys. Res. Atmos., 111, D11208 (2006). DOI: 10.1029/2005JD006619
- S. Merikallio, H. Lindqvist, T. Nousiainen, M. Kahnert. Atmos. Chem. Phys., 11, 5347 (2011). DOI: 10.5194/acp-11-5347-2011
- H. Tang, X.-X. Li. Int. J. Num. Meth. Heat Fluid Flow., 24, 1762 (2014). DOI: 10.1108/HFF-04-2013-0105
- L. Mukherjee, P.-W. Zhai, Y. Hu, D.M. Winker. Opt. Expr., 26, A124 (2018). DOI: 10.1364/OE.26.00A124
- B. Vandenbroucke, M. Baes, P. Camps et al. Astron. Astrophys., 653, A34 (2021). DOI: 10.1051/0004-6361/202141333
- H. Chen-Chen, S. Perez-Hoyos, A. Sanchez-Lavega. Icarus, 354, 114021 (2021). DOI: 10.1051/0004-6361/202141333
- S. Hofer, H. Mutschke, Th.G. Mayerhofer. Astron. Astrophys., 646, A87 (2021). DOI: 10.1051/0004-6361/202038931
- B.T. Draine. Astrophys. J., 926, 90 (2022). DOI: 10.3847/1538-4357/ac3977
- B.S. Hensley, B.T. Draine. Astrophys. J., in press (2022) (arXiv-preprint 2208.12365). DOI: 10.48550/arXiv.2208.12365
- M. Min, J.W. Hovenier, A. de Koter. Astron. Astrophys., 404, 35--46 (2003). DOI: 10.1051/0004-6361:20030456
- V.G. Farafonov, V.B. Il'in, M.S. Prokopjeva, A.R. Tulegenov, V.I. Ustimov. Opt. Spectrosc., 126, 360 (2019). DOI: 10.1134/S0030400X19040076
- M.I. Mishchenko, J.W. Hovenier, L.D. Travis. Light scattering by nonspherical particles (Academic Press, San Diego, 2000)
- B. Sun, G.W. Kattawar, P.Yang, X. Zhang. Appl. Sci., 8, 2686 (2018). DOI: 10.3390/app8122686
- F.M. Kahnert. J. Quant. Spectrosc. Rad. Transf., 79-80, 775 (2003). DOI: 10.1016/S0022-4073(02)00321-7
- V.G. Farafonov, V.B. Il'in. Light Scatt. Rev., 1, 125 (2006). DOI: 10.1007/3-540-37672-0_4
- P.C. Waterman. Proc. IEEE, 53, 805 (1965). DOI: 10.1109/PROC.1965.4058
- M.I. Mishchenko. J. Quant. Spectrosc. Rad. Transf., 242, 106692 (2020). DOI: 10.1016/j.jqsrt.2019.106692
- M.I. Mishchenko, L.D. Travis. Opt. Commun., 109, 16 (1994). DOI: 10.1016/0030-4018(94)90731-5
- W.R.C. Somerville, B. Auguie, E.C. Le Ru. J. Quant. Spectrosc. Rad. Transf., 160, 29 (2015). DOI: 10.1016/j.jqsrt.2015.03.020
- S. Asano, G. Yamamoto. Appl. Opt., 14, 29 (1975). DOI: 10.1364/AO.14.000029
- N.V. Voshchinnikov, V.G. Farafonov. Astrophys. \& Space Sci., 204, 19 (1993). DOI: 10.1007/BF00658095
- V.G. Farafonov, N.V. Voshchinnikov. Appl. Opt., 51, 1586 (2012). DOI: 10.1364/AO.51.001586
- V.G. Farafonov. Diff. Equat., 19, 1765 (1983)
- V.G. Farafonov. Light Scatt. Rev., 8, 189 (2013). DOI: 10.1007/978-3-642-32106-1_5
- A.L. van Buren. arXiv-preprints, math/2009.01618 (2020)
- A.L. van Buren. Mathieu and spheroidal wave functions. [Electronic resource]. URL: http://www.mathieuandspheroidalwavefunctions.com
- V.G. Farafonov, V.B. Il'in, D.G. Turichina. Opt. Spectrosc., 130, 259 (2022). DOI: 10.21883/EOS.2022.02.53686.2893-21
- C. Bohren, D. Huffman. Absorption and scattering of light by small particles (John Wiley \& Sons, New York, 1983). DOI: 10.1002/9783527618156
- G. Mie. Ann. Phys., 330, 377 (1908). DOI: 10.1002/andp.19083300302
- P.W. Barber, S.C. Hill. Light scattering by particles: computational methods (World Scientific, Singapore, 1990). DOI: 10.1142/0784
- M.I. Mishchenko, L.D. Travis, A.A. Lacis. Scattering, absorption and emission of light by small particles (Cambridge Univ. Press, Cambridge, 2002)
- V.G. Farafonov, A.A. Vinokurov, V.B. Il'in. Opt. Spectrosc., 102, 927 (2007). DOI: 10.1134/S0030400X07060203
- C. Flammer. Spheroidal wave functions (Stanford Univ. Press, 1957)
- D.G. Turichina, V.G. Farafonov, V.B. Il'in. In: 2022 Days on Diffraction, ed. by O.V. Motygin (IEEE, Danvers, 2022), p. 130. DOI: 10.1109/DD55230.2022.9960958
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.