Optical properties of Ga-Ge-Sb-Se chalcogenide glasses doped with terbium and dysprosium ions, near the fundamental absorption band edge
Kuzyutkina Yu. S.1, Parshina N. D1, Romanova E. A. 1, Kochubey V. I. 1, Sukhanov M. V.2, Ketkova L. A.2, Shiryaev V. S. 2
1Saratov State University, Saratov, Russia
2Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhny Novgorod, Russia
Email: kuzyutkinays@gmail.com, nina-1999.nina@yandex.ru, elena_rmnv@yahoo.co.uk, saratov_gu@mail.ru, mrmaks@yandex.ru, ketkova@ihps-nnov.ru, shiryaev@ihps-nnov.ru

PDF
In the paper, results of measurements of the optical response of chalcogenide glasses of the Ga5Ge20Sb10Se65 composition doped with rare-earth ions Tb3+ or Dy3+, in the wavelength range of 0.7-1.5 μm by the method of IR spectroscopy are presented. Parameters characterizing the fundamental absorption band edge of the glasses - optical bandgap energy, Urbach tail parameter and weak absorption tail parameter - have been evaluated. It has been found that doping in low concentrations (up to 0.3 wt%) does not influence the optical bandgap energy and optical properties of the glasses in the range of the Urbach tail, but in the range of the weak absorption tail, optical response of the glasses depends on the activator concentration. Crystallization of the glasses produced by the direct melting method also depends on the activator concentration. In the glasses doped with Dy3+, absorption bands of the ion are located in the range of the weak absorption tail of the glass that makes possible energy transfer between the ions and the gap states of the charge carriers. Keywords: rear earth elements, chalcogenide glasses, bandgap energy, Urbach tail, weak absorption tail, gap states.
  1. V.S. Minaev. Stekloobraznye poluprovodnikovye splavy (Metallurgiya, Moscow, 1991). (in Russian)
  2. H. Guo, J. Cui, C. Xu, Yantao Xu, G. Farrell. In: Mid-Infrared Fluoride and Chalcogenide Glasses and Fibers. Progress in Optical Science and Photonics. V. 18 (Springer, Singapore, 2022). DOI: 10.1007/978-981-16-7941-4_7
  3. S.D. Jackson, R.K. Jain. Opt. Express, 28 (21), 30964-31019 (2020). DOI: 0.1364/OE.400003
  4. M.F. Churbanov, B.I. Denker, B.I. Galagan, V.V. Koltashev, V.G. Plotnichenko, M.V. Sukhanov, S.E. Sverchkov, A.P. Velmuzhov. J. Lumin., 245, 118756 (2022). DOI: 10.1016/j.jlumin.2022.118756
  5. V.S. Shiryaev, M.V. Sukhanov, A.P. Velmuzhov, E.V. Karaksina, T.V. Kotereva, G.E. Snopatin, B.I. Denker, B.I. Galagan, S.E. Sverchkov, V.V. Koltashev, V.G. Plotnichenko. J. Non-Cryst. Solids, 567, 120939 (2021). DOI: 10.1016/j.jnoncrysol.2021.120939
  6. B.I. Denker, B.I. Galagan, V.V. Koltashev, V.G. Plotnichenko, G.E. Snopatin, M.V. Sukhanov, S.E. Sverchkov, A.P. Velmuzhov. Opt. Laser Technol., 154, 108355 (2022). DOI: 10.1016/j.optlastec.2022.108355
  7. A.P. Velmuzhov, M.V. Sukhanov, T.V. Kotereva, N.S. Zernova, V.S. Shiryaev, E.V. Karaksina, B.S. Stepanov, M.F. Churbanov. J. Non-Cryst. Solids, 517, 70-75 (2019). DOI: 10.1016/j.jnoncrysol.2019.04.043
  8. Virginie Nazabal, Jean-Luc Adam. Opt. Mater.: X, 15, 100168 (2022). DOI: 10.1016/j.omx.2022.100168
  9. A. Zakery, S.R. Elliot. Optical nonlinearities in chalcogenide glasses and their applications (Springer, Berlin, 2007)
  10. S.G. Bishop, D.A. Turnbull, B.G. Aitken. J. Non-Crystal. Solids, 266--269, 876-883 (2000). DOI: 10.1016/S0022-3093(99)00859-5
  11. MID-INFRARED FIBER PHOTONICS: Glass Materials, Fiber Fabrication and Processing, Laser and Nonlinear Sources. Ed. by: S. Jackson, R. Vallee, M. Bernier (Woodhead Publishing, 2021)
  12. V.S. Shiryaev, A.I. Filatov, E.V. Karaksina, A.V. Nezhdanov. J. Sol. St. Chem., 303, 122454 (2021). DOI: 10.1016/j.jssc.2021.122454
  13. M.V. Sukhanov, A.P. Velmuzhov, P.A. Otopkova, L.A. Ketkova, I.I. Evdokimov, A.E. Kurganova, V.G. Plotnichenko, V.S. Shiryaev. J. Non-Cryst. Solids, 593, 121793 (2022). DOI: 10.1016/j.jnoncrysol.2022.121793
  14. I.I. Evdokimov, D.A. Fadeeva, A.E. Kurganova, V.S. Shiryaev, V.G. Pimenov, E.V. Karaksina. J. Analyt. Chem., 7 (7), 869-877 (2020). DOI: 10.1134/S1061934820070060
  15. Yu.S. Kuzyutkina, E.A. Romanova, V.I. Kochubey, V.S. Shiryaev. Opt. i spektr., 117 (1), 60-66 (2014). (in Russian)
  16. L. Sojka, Z. Tang, H. Zhu, E. Beres-Pawlik, D. Furniss, A.B. Seddon, T.M. Benson, S. Sujecki. Opt. Mater. Express, 2 (11), 1632-1640 (2012). DOI: 10.1364/OME.2.001632
  17. M.F. Churbanov, B.I. Denker, B.I. Galagan, V.V. Koltashev, V.G. Plotnichenko, M.V. Sukhanov, S.E. Sverchkov, A.P. Velmuzhov. J. Luminesc. 231, 117809 (2021). DOI: 10.1016/j.jlumin.2020.117809
  18. J. Ren, G. Yang, H. Zeng, X. Zhang, Y. Yang, G. Chen. J. Am. Ceram. Soc., 89, 2486-2491 (2006). DOI:10.1111/j.1551-2916.2006.01070.x
  19. F. Starecki, G. Louvet, J. Ari, A. Braud, J.-L. Doualan, R. Chahal, I. Hafienne, C. Boussard-Pledel, V. Nazabal, P. Camy. J. Luminesc., 218, 116853 (2020). DOI: 10.1016/j.jlumin.2019.116853
  20. F. Starecki, F. Charpentier, J.-L. Doualan, L. Quetel, K. Michel, R. Chahal, J. Troles, B. Bureau, A. Braud, P. Camy, V. Moizan, V. Nazabal. Sens. Actuators B, 207, 518 (2015). DOI: 10.1016/j.snb.2014.10.011
  21. L.A. Ketkova, A.P. Velmuzhov, M.V. Sukhanov, B.S. Stepanov. J. Eur. Ceramic Soc., 41, 7852-7861 (2021). DOI: 10.1016/j.jeurceramsoc.2021.08.019
  22. J. Tauc. Amorphous and Liquid Semiconductors (Plenum, London, 1974)
  23. T. Moss, G. Burrell, B. Ellis. Semiconductor optoelectronics (1976)
  24. F. Starecki, N. Abdellaoui, A. Braud, J.-L. Doualan, C. Boussard-Pledel, B. Bureau, P. Camy, V. Nazabal. Opt. Lett., 43 (6), 1211-1214 (2018). DOI: 10.1364/OL.43.001211

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru