Investigation of the effect of spatial dispersion in a metal shell of a non-spherical magnetoplasmonic nanoparticle
Eremin Yu. A. 1, Lopushenko V. V.1
1Lomonosov Moscow State University, Moscow, Russia
Email: lopushnk@cs.msu.ru

PDF
Based on the method of discrete sources, the effect of spatial dispersion in the metal shell of a magnetoplasmonic nanoparticle on the absorption of electromagnetic energy is studied. Hybrid particle is composed of a magnetic core Fe3O4 or Fe2O3 and a golden shell. The influence of the elongation of spheroidal particles on the level of energy absorption is considered. It is shown that taking into account the spatial dispersion in the shell leads to a decrease in the absorption cross section to 30% and is accompanied by a shift of the plasmon resonance to the short-wavelength region down to 25 nm. It is found that averaging the absorption cross section over the directions of propagation of external excitation and polarizations entails a threefold decrease in the level of absorbed energy. Keywords: discrete source method, plasmon resonance, spatial dispersion, generalized nonlocal response theory.
  1. J.W.M. Chon, K. Iniewski. Nanoplasmonics. Advanced Device Applications (CRC Press, Boca Raton, 2018). ISBN: 9781138072633
  2. G. Barbillon. Photonics, 9 (112), 1 (2022). DOI: 10.3390/books978-3-0365-3704-7
  3. G. Brennan, S. Bergamino, M. Pescio, S.A.M. Tofail, C. Silien. Nanomaterials, 10 (12), 2424 (2020). DOI: 10.3390/nano10122424
  4. McK. Smith, M. McKeague, M.C. Derosa. MethodsX, 6, 333 (2019). DOI: 10.1016/j.mex.2019.02.006
  5. H-V. Tran, N. Ngo, R. Medhi, P. Srinoi, T. Liu, S. Rittikulsittichai, T.R. Lee. Materials, 15 (2), 503 (2022). DOI:10.3390/ma15020503
  6. S. Cherukulappurath. Fundamentals and Properties of Multifunctional Nanomaterials, ed. by S. Thomas, N. Kalarikkal, A.R. Abraham (Elsevier, Amsterdam, 2021), ch. 13. DOI: 10.1016/B978-0-12-822352-9.00002-X
  7. Z. Fattahi, A.Y. Khosroushahi, M. Hasanzadeh. Biomedicine \& Pharmacotherapy, 132, 110850 (2020). DOI: 10.1016/j.biopha.2020.110850
  8. M. Hadded, A. Hmima, T. Maurer, A. Chehaidar, J. Plain. Optical Materials, 114, 110946 (2021). DOI:10.1016/j.optmat.2021.110946
  9. E. Alphandery. Acta Biomaterialia, 124, 50 (2021). DOI: 10.1016/J.ACTBIO.2021.01.028
  10. I. Mukha, O. Chepurna, N. Vityuk, A. Khodko, L. Storozhuk, V. Dzhagan, D.R.T. Zahn, V. Ntziachristos, A. Chmyrov, T.Y. Ohulchanskyy. Nanomaterials, 11(5), 1113 (2021). DOI:10.3390/nano11051113
  11. P.E. Stamatopoulou, Ch. Tserkezis. Optical Materials Express, 12(5), 1869 (2022). DOI:10.1364/OME.456407
  12. Y. Huang, L. Gao. J. Phys. Chem. C, 118(51), 30170 (2014). DOI: 10.1021/jp508289z
  13. M. Barbry, P. Koval, F. Marchesin, R. Esteban, A.G. Borisov, J. Aizpurua, D. Sanchez-Portal. Nano Lett., 15(5), 3410 (2015). DOI: 10.1021/acs.nanolett.5b00759
  14. M. Kupresak, X. Zheng, A.E. Vandenbosch, V.V. Moshchalkov. Adv. Theory and Simul., 3(1), 1900172 (2020). DOI: 10.1002/adts.201900172
  15. N.A. Mortensen, S. Raza, M. Wubs, T. S ndergaard, S.I. Bozhevolnyi. Nature Communications, 5, 3809 (2014). DOI: 10.1038/ncomms4809
  16. M. Wubs, N.A. Mortensen. Quantum Plasmonics, ed. by S.I. Bozhevolnyi, L. Martin-Moreno, F. Garcia-Vidal (Springer, Berlin/Heidelberg, 2017), p. 279. DOI: 10.1007/978-3-319-45820-5_12
  17. Yu.A.Eremin Opt. i spektr., 128 (9), 1388 (2021) (in Russian). DOI:10.21883/OS.2020.09.49881.141-20 [Yu.A. Eremin. Opt. Spectr., 128, 1500 (2021). DOI:10.1134/S0030400X20090088]
  18. C. David, F.J. Garci a de Abajo. J. Phys. Chem. C, 115(40), 19470 (2011). DOI: 10.1021/jp204261u
  19. C. David. Nonlocal and Collective Phenomenain the Plasmons of Metallic Nanostructures (Doctoral Thesis, Universidad Aut onoma de Madrid, 2014)
  20. Y. Huang, L. Gao. J. Phys. Chem. C, 118(51), 30170 (2014). DOI: 10.1021/jp508289z
  21. A. Doicu,Yu. Eremin, T. Wriedt. J. Quantitative Spectroscopy and Radiative Transfer, 254, 107196 (2020). DOI: 10.1016/j.jqsrt.2020.107196
  22. J.M. McMahon, S.K. Gray, G.C. Schatz. Phys. Rev. B, 82(3), 035423 (2010). DOI:10.1103/PhysRevB.82.035423
  23. COMSOL --- Software for Multiphysics Simulation [Electronic source]. URL:https://www.comsol.com/
  24. Yu.A. Eremin, A.G. Sveshnikov. Zhurn. vychisl. matem. i matem. fiz., 61(4), 34 (2021) (in Russian). DOI:10.31857/S0044466921040049 [Yu.A. Eremin, A.G. Sveshnikov. Comput. Math. and Math. Phys., 61(4), 564 (2021). DOI: 10.1134/S0965542521040047]
  25. Yu.A. Eremin. Opt. i spektr., 129 (8), 1079 (2021) (in Russian). DOI:10.21883/OS.2021.08.51205.1872-21 [Yu.A. Eremin. Opt. Spectrosc., 129, 1095 (2021). DOI:10.1134/S0030400X21080087]
  26. R.G. Newton. Scattering Theory of Waves and Particles (McGraw Hill, 1966)
  27. Z. Izadiyan, K. Shameli, M. Miyake, S-Y. Teow, S-C. Peh, S.E. Mohamad, S.H.M. Taib. Mater. Sci. Eng.: C, 96, 51 (2019). DOI: 10.1016/j.msec.2018.11.008
  28. T. Dasri, A. Chingsungnoen. J. Magnet. Magnet. Mat., 456, 368 (2018). DOI:10.1016/j.jmmm.2018.02.066
  29. T.T. Nguyen, F. Mammeri, S. Ammar. Nanomaterials, 8(3), 149 (2018). DOI:10.3390/nano8030149
  30. C.M. Garci a-Rosas, L.A. Medina, P. Lopez, N. Large, A. Reyes-Coronado. J. Nanoparticle Research, 23, 144 (2021). DOI: 10.1007/s11051-021-05261-x
  31. T. Mahmoudi-Badiki, E. Alipour, H. Hamishehkar, S.M. Golabi. J. Electroanal. Chem., 788, 210 (2017). DOI: 10.1016/j.jelechem.2017.02.011
  32. Refractive index database [Electronic source]. URL: https://refractiveindex.info
  33. P.B. Johnson, R.W. Christy. Phys. Rev. B, 6, 4370 (1972). DOI: 10.1103/PhysRevB.6.4370
  34. Yu.A. Eremin, V.V. Lopushenko. Nanomaterials, 11, 3297 (2021). DOI: 10.3390/nano11123297
  35. R. Khan, B. Gul, S. Khan, H. Nisar, I. Ahmad. Photodiagnosis Photodyn. Ther., 33, 102192 (2021). DOI: 10.1016/j.pdpdt.2021.102192

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru