Features of Raman scattering in lead sulfide and lead sulfide-selenide epitaxial films
Fedorov A.V.1, Baranov A.V.1, Zimin S.P.2,3
1ITMO University, St. Petersburg, Russia
2Demidov State University, Yaroslavl, Russia
3Valiev Institute of Physics and Technology of RAS, Yaroslavl Branch, Yaroslavl, Russia
Email: zimin@uniyar.ac.ru
Raman scattering spectra of 1-2 μm thick n-PbS(111) epitaxial films grown by molecular beam epitaxy on BaF2(111) substrates were obtained and analyzed. The spectra were recorded at a low excitation level of 0.36 mW/μm2, which did not cause photo- and thermal degradation of the films. It is shown that, in accordance with the symmetry selection rules, the bands in the spectra correspond to overtone or combination tones of phonon modes of PbS at special points of the Brillouin zone. The analysis of the bands of oxides and oxysulfates of lead, which can mask the bands of lead sulfide, was carried out. The obtained data were used in the analysis of the recorded Raman scattering spectra by epitaxial films of a ternary solid solution PbS0.5Se0.5. Keywords: Raman scattering, low excitation level, photooxidation, epitaxial films, lead sulfide, lead sulfide-selenide.
- Yu.I. Ravich, B.A. Efimova, I.A. Smirnov. Metody issledovaniya poluprovodnikov v primenenii k khal'kogenidam svintsa PbTe, PbSe, PbS (Nauka, Moscow, 1968) (in Russian)
- T.Fu. Sensors. Actuators B: Chemical, 140 (1), 116 (2009). DOI: 10.1016/j.snb.2009.03.075
- S. Kumar, Z.H. Khan, M.A. Majeed, K.M. Husain. Curr. Appl. Phys., 5, 561 (2005). DOI: 10.1016/j.snb.2009.03.075
- F.W. Wise. Acc. Chem. Res., 33, 773 (2000). DOI: 10.1021/ar970220q
- S.P. Zimin, E.S. Gorlachev. Nanostrukturirovannye khal'kogenidy svintsa (Izd. Yarosl. Gos. Univ., Yaroslavl, 2011) (in Russian)
- N. Sukharevska, D. Bederak, V.M. Goossens, J. Momand, H. Duim, D.N. Dirin, M.V. Kovalenko, B.J. Kooi, M.A. Loi. ACS Appl. Mater. Interfaces, 13, 5195 (2021). DOI: 10.1021/acsami.0c18204
- T. Blachowicz, A. Ehrmann. Appl. Sci., 10, 1743 (2020). DOI: 10.3390/app10051743
- X. Zhang, Y. Chen, L. Lian, Z. Zhang, Y. Liu, L. Song, C. Geng, J. Zhang, S. Xu. Nano Res., 14 (3), 628 (2021). DOI: 10.1007/s12274-020-3081-5
- A. Abu-Hariri, A.K. Budniak, F. Horani, E. Lifshitz. RSC Adv., 11, 30560 (2021). DOI: 10.1039/d1ra04402h
- H. Cao, G. Wang, S. Zhang, X. Zhang. Nanotechnology, 17, 3280 (2006). DOI: 10.1088/0957-4484/17/13/034
- J.-H. Chen, C.-G. Chao, J.-C. Ou, T.-F. Liu. Surface Science, 601, 5142 (2007). DOI: 10.1016/j.susc.2007.04.228
- J.-P. Ge, J. Wang, H.-X. Zhang, X. Wang, Q. Peng, Y.-D. Li. Chem. Eur. J., 11, 1889 (2005). DOI: 10.1002/chem.200400633
- G.D. Smith, S. Firth, R.J.H. Clark, M. Cardona. J. Appl. Phys., 92, 4375 (2002). DOI: 10.1063/1.1505670
- P. Yin, R. Zhang, Y. Zhang, L. Guo. International J. Modern Physics B., 24 (15), 3257 (2010). DOI: 10.1142/S0217979210066422
- A.V. Baranov, K.V. Bogdanov, E.V. Ushakova, S.A. Cherevkov, A.V. Fedorov, S. Tscharntke. Opt. Spectrosc., 109 (2), 268 (2010). DOI: 10.1134/S0030400X10080199
- Z. Peng, Y. Jiang, Y. Song, C. Wang, H. Zhang. Chem. Mater., 20 (9), 3153 (2008). DOI: 10.1021/cm703707v
- J.G. Shapter, M.H. Brooker, W.M. Skinner. International J. Mineral Processing, 60, 199 (2000). DOI: 10.1016/S0301-7516(00)00017-X
- G. Giudici, P. Ricci, P. Lattanzi, A. Anedda. American Mineralogist, 92, 518 (2007). DOI: 10.2138/am.2007.2181
- K. Stadelmann, A. Elizabeth, N.M. Sabanes, K.F. Domke. Vibrational Spectroscopy, 91, 157 (2016). DOI: 10.1016/j.vibspec.2016.08.008
- S.P. Zimin, E.S. Gorlachev, N.V. Gladysheva, V.V. Naumov, V.F. Gremenok, H.G. Seidi. Opt. Spectrosc., 115 (1), 679 (2013). DOI: 10.1134/S0030400X1311026X
- Y. Batonneau, C. Bremard, J. Laureyns, J.C. Merlin. J. Raman Spectroscopy, 31 (12), 1113 (2000). DOI: 10.1002/1097-4555(200012)31:12<1113::aid-jrs653>3.0.co;2-e
- M.O. Kuzivanov, S.P. Zimin, A.V. Fedorov, A.V. Baranov. Opt. Spectrosc., 119 (6), 938 (2015). DOI: 10.1134/S0030400X15120140
- S.P. Zimin, E.S. Gorlachev, A.V. Baranov, S.A. Cherevkov, E. Abramof, P.H.O. Rappl. Opt. Spectrosc., 117 (5), 748 (2014). DOI: 10.1134/S0030400X14110241
- M. Labidi, H. Meradji, S. Ghemid., S. Labidi, F. El Haj Hassan. Modern Physics Letters, 25 (7), 473 (2011). DOI: 10.1142/S0217984911025729
- K.S. Upadhyaya, M. Yadav, G.K. Upadhyaya. Phys. Stat. Sol. B, 229, 1129 (2002). DOI: 10.1002/1521-3951(200202)229:3<1129::AID-PSSB1129>3.0.CO;2-6
- T.D. Krauss, F.W. Wise. Phys. Rev. B, 55, 9860 (1977). DOI: 10.1103/PhysRevB.55.9860
- P.G. Etchegoin, M. Cardona, R. Lauck, R.J.H. Clark, J. Serrano, A.H. Romero. Phys. Stat. Sol. B, 245 (6), 1125 (2008). DOI: 10.1002/pssb.200743364
- O. Kilian, G. Allan, L. Wirtz. Phys. Rev. B, 80, 245208 (2009). DOI: 10.1103/PhysRevB.80.245208
- O. Semeniuk, A. Csik, S. Kokenyesi, A. Reznik. J. Mater. Sci., 52 (13), 7937 (2017). DOI: 10.1007/s10853-017-0998-5
- G. Shao, G. Chen, J. Zuo, M. Gong, Q. Yang. Langmuir, 30, 7811 (2014). DOI: 10.1021/la501267f.1
- G.R. Wilkinson. Raman spectra of ionic, covalent, and metallic crystals. In: The Raman effect, V. 2: Applications, ed. A. Anderson. Chapter 5. (Marcel Dekker, New York, 1973).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.