Coherent control and creation of population gratings for a pair of attosecond pulses in a resonant medium based on one-dimensional rectangular quantum wells
Arkhipov R. M. 1,2, Belov P. A.3, Arkhipov M. V. 1, Pakhomov A. V. 1, Rosanov N. N. 1,2
1St. Petersburg State University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3SOLAB Spin-optic laboratory, Saint-Petersburg state university, St. Petersburg, Russia
Email: arkhipovrostislav@gmail.com, pavelbelov@gmail.com, m.arkhipov@spbu.ru, antpakhom@gmail.com, nnrosanov@mail.ru

PDF
Attosecond pulses can be used to create and control coherence in resonant media, since their duration is shorter than the population relaxation times T1 and medium polarization T2. Previously, the possibility of creating and ultrafast control of electromagnetically induced gratings (EMIG) of atomic populations in a resonant medium was shown using a sequence of extremely short light pulses, when the pulses coherently interact with the medium and do not simultaneously overlap in the medium. These studies were carried out in various approximations, when a finite number of energy levels of the medium is taken into account, or when the pulse amplitude is small. In this paper, based on a direct numerical solution of the time dependent Schredinger equation without the indicated approximations, we study the possibility of ultrafast coherent control of populations and the creation of an EMIG by a pair of attosecond pulses in a multilevel resonant medium with a low density of particles. The medium is modeled using a one-dimensional rectangular potential well with infinitely high walls. The studies performed show the possibility of ultrafast coherent control of the properties of resonant media based on quantum wells using attosecond pulses. Keywords: electromagnetically induced gratings, coherent interaction, extremely short pulses, unipolar pulses, attosecond pulses, medium coherence.
  1. F. Krausz, M. Ivanov. Rev. Mod. Phys., 81, 163 (2009)
  2. D.M. Villeneuve, P. Hockett, M.J.J. Vrakking, H. Niikura. Science, 356, 1150-1153 (2017)
  3. E. Goulielmakis, Z. Loh, A. Wirth, R. Santra, N. Rohringer, V.S. Yakovlev, S. Zherebtsov, T. Pfeifer, A.M. Azzeer, M.F. Kling, St.R. Leone, F. Kraus. Nature, 466, 739-743 (2010)
  4. F. Calegari, G. Sansone, S. Stagira, C. Vozzi, M. Nisoli. J. Physics B: Atomic, Molecular and Optical Physics, 49, 062001 (2016)
  5. M.T. Hassan, T.T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A.M. Zheltikov, V. Pervak, F. Krausz, E. Goulielmakis. Nature, 530, 66 (2016)
  6. M.F. Ciappina, J.A. Perez-Hernandez, A.S. Landsman, W.A. Koell, S. Zherebtsov, B. Forg, J. Schootz, L. Seiffert, T. Fennel, T. Shaaram, et al. Report on Progress in Physics, 80 (5), 054401 (2017)
  7. L. Seiffert, S. Zherebtsov, M.F. Kling, T. Fennel. arXiv preprint, arXiv:2109.02367 (2021)
  8. C. Karnetzky, P. Zimmermann, C. Trummer, C.D. Sierra, M. Worle, R. Kienberger, A. Holleitner. Nat. Commun., 9, 2471 (2018)
  9. L. Shi, I. Babushkin, A. Husakou, O. Melchert, B. Frank, J. Yi, G. Wetzel, A. Demircan, C. Lienau, H. Giessen, M. Ivanov, U. Morgner, M. Kovacev. Laser \& Photonics Reviews, 15 (8), 2000475 (2021)
  10. R.M. Arkhipov, M.V. Arkhipov, N.N. Rosanov. Quant. Electron. 50(9), 801 (2020)
  11. R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, N.N. Rosanov. Opt. Lett., 44, 1202 (2019)
  12. R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, A.V. Pakhomov, N.N. Rosanov. JETP Lett. 114 (5), 250 (2021)
  13. N. Rosanov, D. Tumakov, M. Arkhipov, R. Arkhipov. Phys. Rev. A, 104 (6), 063101 (2021)
  14. P. Peng, Y. Mi, M. Lytova, M. Britton, X. Ding, A.Yu. Naumov, P.B. Corkum, D.M. Villeneuve. Nat. Photon., (2021). DOI: 10.1038/s41566-021-00907-7
  15. M. Garg, A. Martin-Jimenez, M. Pisarra, Y. Luo, F. Martin, K. Kern. Nat. Photon., (2021). DOI: 10.1038/s41566-021-00929-1
  16. L. Allen, J.H. Eberly, Optical resonance and two-level atoms. NY.: Wiley, 1975
  17. S. Bengtsson, E.W. Larsen, D. Kroon, S. Camp, M. Miranda, C.L. Arnold, A. L'Huillier, K.J. Schafer, M.B. Gaarde, L. Rippe, J. Mauritsson, Nature Photonics, 11 (4), 252-258 (2017)
  18. R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, M.O. Zhukova, A.N. Tcypkin, N.N. Rosanov. JETP Letters, 113 , 242 (2021). 10
  19. E.I. Shtyrkov, V.S. Lobkov, N.G. Yarmukhametov. JETP Lett., 27, 648 (1978)
  20. R.M. Arkhipov. JETP Lett., 113 (10), (2021)
  21. H.J. Eichler, P. Gunter, D.W. Pohl. Laser-Induced Dynamic Gratings. (Springer-Verlag, Berlin, Heidelberg, NY., Tokyo), (1981)
  22. H. Zhang, J. Yuan, S. Dong, C. Wu, L. Wang. Appl. Sci., 10, 5740 (2020)
  23. Z. Zhang, S. Liang, F. Li, S. Ning, Y. Li, G. Malpuech, Y. Zhang, M. Xiao, D. Solnyshkov. Optica, 7, 455 (2020)
  24. J. Yuan, S. Dong, H. Zhang, C. Wu, L. Wang, L. Xiao, S. Jia. Opt. Express, 29 (2), 2712 (2021)
  25. T. Jones, W.K. Peters, A. Efimov, D. Yarotski, R. Trebino, P. Bowlan. Opt. Express, 29 (8), 11394 (2021)
  26. R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, N.N. Rosanov. Opt. Lett., 41, 4983 (2016)
  27. R.M. Arkhipov, M.V. Arkhipov, I. Babushkin, A. Demircan, U. Morgner. N.N. Rosanov. Scientific Reports, 7, 12467 (2017)
  28. R. Arkhipov, A. Pakhomov, M. Arkhipov, A. Demircan, U. Morgner, N. Rosanov, I. Babushkin. Optics Express, 28, 17020 (2020)
  29. R.M. Arkhipov. Opt. Spectrosc., 128, 1865 (2020)
  30. R. Arkhipov, A. Pakhomov, M. Arkhipov, I. Babushkin, A. Demircan, U. Morgner, N.N. Rosanov. Scientific Reports, 11 (1961) (2021)
  31. R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, Yu.M. Artem'ev, N.N. Rosanov. Opt. Spectrosc., (2021)
  32. Zh.I. Alferov. Semiconductors, 32, 1 (1998)
  33. E.L. Ivchenko. Optical Spectroscopy of Semiconductor Nanostructures, Alpha Science, 2005
  34. P.A. Belov. Phys. E, 112, 96 (2019)
  35. M. Belloni, R.W. Robinett. Phys. Rep., 540 (2), 25-122 (2014)
  36. L.D. Landau, E.M. Lifshitz. Kvantovaya mekhanika. Nerelyativistskaya teoriya. M.: Nauka, 1989. 768 p. (in Russian). (L.D. Landau, E.M. Lifshitz. Quantum mechanics (Pergamon, 1974))
  37. J. Crank, P. Nicolson. Mathematical Proceedings of the Cambridge Philosophical Society, 43 (1), 50-67 (1947). DOI: 10.1017/S0305004100023197
  38. T. Gaumnitz, A. Jain, Y. Pertot, M. Huppert, I. Jordan, F. Ardana-Lamas, H.J. Worner. Opt. Express, 25, 27506 (2017)
  39. Y. Shou, R. Hu, Z. Gong, J. Yu, Jia erh Chen, G. Mourou, X. Yan, W. Ma. New J. Phys., 23, 053003 (2021)
  40. R.M. Arkhipov, M.V. Arkhipov, N.N. Rosanov. JETP. Lett., 111, 484 (2020).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru