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Coherent control and creation of population gratings for a pair of

attosecond pulses in a resonant medium based on one-dimensional

rectangular quantum wells
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Attosecond pulses can be used to create and control coherence in resonant media, since their duration is shorter

than the population relaxation times T1 and medium polarization T2 . Previously, the possibility of creating and

ultrafast control of electromagnetically induced gratings (EMIG) of atomic populations in a resonant medium was

shown using a sequence of extremely short light pulses, when the pulses coherently interact with the medium and

do not simultaneously overlap in the medium. These studies were carried out in various approximations, when

a finite number of energy levels of the medium is taken into account, or when the pulse amplitude is small. In

this paper, based on a direct numerical solution of the time dependent Schrëdinger equation without the indicated

approximations, we study the possibility of ultrafast coherent control of populations and the creation of an EMIG

by a pair of attosecond pulses in a multilevel resonant medium with a low density of particles. The medium

is modeled using a one-dimensional rectangular potential well with infinitely high walls. The studies performed

show the possibility of ultrafast coherent control of the properties of resonant media based on quantum wells using

attosecond pulses.

Keywords: electromagnetically induced gratings, coherent interaction, extremely short pulses, unipolar pulses,

attosecond pulses, medium coherence.
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Introduction

In recent years attosecond electromagnetic pulses are

obtained experimentally [1]. These pulses are actively used

to study the dynamics of wave packets in atoms, molecules

and solid bodies [2–5]. Recently the interaction of ultra

short pulses with different nanostructures [6,7], in particular,

with metal nanostructures [8,9], is actively investigated. The

interest in recent studies is related to the possibility to

convert ultrafast optical signals into low-frequency signals

due to creation of the electron current under the interaction

of the initial pulse with a nanoparticle.

The limit for reduction of light pulse length is obtaining of

already unipolar half-cycle pulse containing a field half-wave

of single polarity and having a nonzero electric pulse area

(see review in [10] and cited literature). These pulses can

faster and in a more effective manner control the properties

of wave packets as compared with normal bipolar multi-

cycle pulses having a nonzero electric pulse area [11–13].
Length of femtosecond and attosecond pulses can be

shorter than relaxation times T1 and T2, therefore coherent

interaction of these pulses with the medium is possible.

Results of recent experiments show the possibility to

induce coherence and to control it in molecules using

such pulses [14,15]. In case of coherent excitation of a

resonant medium by a short pulse, it excites coherence of

the medium and a free induction decay arises [16]. XUV-

attosecond pulses make it possible to create and control the

free induction decay [17,18].

The coherence in resonant medium can also be used

to create periodical electromagnetically induced gratings

(EMIG) of atom populations using ultrashort [19] and

extremely short pulses [20], not occurring one-time in the

medium. Usually, EMIGs are resulted from interference of a

pair of long monochromatic laser beams overlapping in the

medium [21–25]. EMIGs created in this manner are actively

studied in recent years and have different applications in

optics and spectroscopy.

However, creating an interference pattern and, as a

consequence, inducing EMIGs using extremely short pulses

seems impossible due to their short length, which can be of

an order of field cycle or less. However, this is not true. As

shown before, creating EMIG without one-time overlapping

of pulses in the medium is possible at coherent interaction

of pulses with the medium [26–31].
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In this case EMIGs are created due to interference of the

medium polarization wave (induced coherence), that has

been created by the first pulse, with the second pulse that

propagates in the opposite direction to the first pulse and

does not meet it one-time in the medium. The possibility of

EMIG creation in these conditions using a train of one-cycle

and half-cycle attosecond and femtosecond pulses is actively

studied in recent years.

In the case of coherent excitation in a resonant medium

by a pair of extremely short pulses, the first pulse induces

coherence in the medium, while the second pulse, acting

with a certain delay in relation to the first pulse, allows

controlling it, which makes it possible, for example, to

affect selectively the populations of states, create an inverse

population, etc. [20,28–31]. The latest results of investiga-

tions in the field of EMIG creation and coherence control

using extremely short pulses are described in detail in the

review [20] and cited literature.

However, in previous studies [20,26–31] the possibility

was investigated to create and control EMIG and coherent

excitation by a train of extremely short pulses, when

the medium was modelled in a low-level approximation.

The possibility to create EMIGs in multilevel media

was also investigated using an approximated solution to

the Schr?dinger equation in the weak field approxima-

tion [30,31].
For a more accurate analysis of the possibility of ultrafast

control of populations and EMIG creation in a resonant

medium, it is necessary to solve the time dependent

Schr?dinger equation for wave function without the above-

mentioned approximations.

In this study, on the basis of numerical solution to

the time dependent Schr?dinger equation, the possibility is

theoretically investigated to create population gratings in a

multilevel medium with low density of particles, as well

as the possibility of ultrafast coherent control of bonded

states populations of the medium using half-cycle attosecond

pulses. We consider the simplest case when the medium

is modelled using one-dimensional model of rectangular

potential well with infinitely high walls.

This medium model and its different variants are exten-

sively used for analysis of interaction of metal nanoparticles

with short laser pulses [9], modelling excitons in semicon-

ductor structures, etc. (see [32–34] and cited literature).
Relaxation times in these systems can lie in the femtosec-

ond range. Therefore, superfast coherent control of these

systems requires the use of shorter pulses with durations

and interpulse delays lying in the attosecond range.

Creating EMIG and control of bound
states population in a resonant medium
on the basis of one-dimensional
rectangular quantum wells

Just as in [20,26–31], we consider a rarefied medium

(it allows neglecting the absorption of the excitation pulse

Excitation
attosecond

pulse 1

Excitation
attosecond

pulse 2

Array of resonant atoms, molecules,
quantum well nanostructures ets.

0 x

Figure 1. Diagram of population gratings creation in a resonant

medium using a pair of attosecond pulses propagating towards each

other but without one-time overlapping in the medium. Particles of

the medium are shown in blue as one-dimensional quantum wells.

radiation propagating in the medium), which is excited by

a pair of attosecond pulses propagating towards each other,

see Fig. 1. The first pulse moves from left to right, the

second pulse moves from right to left.

In this case, as shown in these articles, the problem of

resonant medium excitation by a pair of pulses is reduced

to the problem of excitation of an isolated quantum system

by a pair of short pulses with variable delay between them,

see [20,26–31].
Indeed, in the diagram shown in Fig. 1 the propagating

pulse 1 leaves behind a medium coherence oscillating at

frequencies of resonant transitions (polarization and non-

diagonal elements of the density matrix). And phase of this

oscillation will be dependent on the position of resonant

dipole, i.e. on the x coordinate.

Then pulse 2, moving in the opposite direction, interacts

with the oscillating coherence (polarization) of the medium

induced by pulse 1. Since phase of this oscillation depends

on the x coordinate, the second pulse can coherently control

this oscillation. For example, in some point the polarization

oscillation at some resonant transition will be extinguished,

while at another point they will be amplified. The situation

is similar to the control of a classical pendulum (swing)
oscillation by successive pushes.

Thus, the result of the medium interaction with the pair

of pulses is dependent to a significant extent on the moment

of time of the second pulse arrival to the given point of

the medium, i.e. it is defined by the delay between pulses

1 ∼ x
c (c — speed of light). It means, that a sine (or a more

complicated, other than harmonic waveform) population

grating arises in the medium at each resonant transition of

this medium.

And thus, the problem of interaction between an extended

rarefied medium and a pair of pulses can be reduced

to the problem of interaction between a single quantum

system and a pair of extremely short pulses with variable

delay [20,26–31].
Let us consider a medium model, which we describe as

a one-dimensional potential well with absolutely rigid walls.

Such a model, although being the simplest, however is used

in physics, for example, in description of metal nanoparticles

and semiconductor nanostructures [9,32–35].
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Potential energy of the particle in this case can be written

as follows:

U(x) = 0, |x | ≤
a
2
;

U(x) = ∞, |x | >
a
2
,

where a — width of the well.

Eigen energies of the particle in this case are as

follows [36]

En =
~
2

2m

(

πn
a

)2

, n = 1, 2, 3 . . . ,

while eigen functions are a set of standing waves

ϕn =

√

2

a
cos

πn
a

x , n = 1, 3, 5, . . . ;

ϕn =

√

2

a
sin

πn
a

x , n = 2, 4, 6, . . . .

The system is excited by a pair of attosecond pulses of

the following form:

Ee(t)=E0e−
t2

τ 2 cos(ωt + φ) + E0e
−(t−1)2

τ 2 cos(ω[t−1] + φ).
(1)

Here ω — frequency of pulses, φ — carrier envelope phase

(CEP), 1 — delay between pulses, t — time, τ — pulse

duration.

We consider a coherent interaction between pulses and

the medium, i.e. time intervals shorter than relaxation times

of the medium — duration of pulses and delay between

them should be shorter than these times for the interaction

to be coherent. Therefore we neglect the relaxation in the

following.

The interaction between a quantum system and a field of

external pulses is described by the Schr?dinger equation for

wave function 9(x , t) [36]

i~
∂9(x , t)

∂t
= [Ĥ0 + V (t)]ψ. (2)

Here ~ — reduced Planck?s constant, Ĥ0 — eigen Hamilto-

nian of the system and V (t) = −dE(t) — energy of system

interaction with the field of external pulses in the dipole

approximation, d = qx — dipole moment, q — electron

charge.

In the assumption of weak amplitude of the external field,

population of the k-th bound state wn of the quantum

system after the end of pulses can be calculated in the

first order of the perturbation theory and defined by the

following relationship [20,30]

wn =
d2
1n

~2
E2
0 τ

2 exp

[

−
(ω2

1n + ω2)

2
τ 2

]

× [cosh(ω1nωτ
2) + cos 2φ][1 + cos(ω1n1)], (3)

where d1n — dipole moment of transition, ω1n — frequency

of resonant transition.

0 102 64 8

P
o
p
u
la

ti
o
n

0

1.0

0.2

0.6

0.8

0.4

D/Tp

| |a1
2

2
2| |a

3
2| |a

4
2| |a

Figure 2. Populations of the first four bound states in a

rectangular well with infinitely rigid walls |a i |
2 as a function of

delay between attosecond pulses 1.
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Figure 3. Difference of populations in a rectangular well with

infinitely rigid walls for parameters shown in Fig. 1 as a function

of delay between attosecond pulses 1.

This approximated expression predicts the emergence

of harmonic population gratings in the medium and the

possibility of selective coherent control of bound state

populations of isolated nanostructure [20,30,31]. However,

in strong fields the form of induced gratings may be other

than the simple harmonic form [30].

For a more precise analysis, we solved numerically the

time dependent Schr?dinger equation (TSE) (2) for a

particle in a one-dimensional potential well with absolutely

rigid walls, which is exposed to the action of a pair of

attosecond pulses of form (1). We used the Crank-Nicolson

method [37] to solve the TSE numerically.

Figures 2 and 3 illustrate the population of the first

four bound states and the difference of populations,

respectively, after the end of pulses as a function of the

delay between pulses 1. Parameters of the calculation were

as follows: incident field amplitude E0 = 2 · 108 V/cm, well
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Figure 4. Populations of the first four bound states in a

rectangular well with infinitely rigid walls of levels |a i |
2 as a

function of delay between attosecond pulses 1. Excitation pulse

length τ = 0.3Tp = 134.6 as. Other parameters are the same as in

Fig. 2.

width a = 1.2 nm, frequency of pulses ω = 14 · 1015 rad/s
(wavelength λa = 134.6 nm, period Tp = 2π

ω
= 448.8 as),

phase φ = 0, excitation pulse length τ = 0.2Tp = 89.76 as.

Pulses with a length of tens of attoseconds and less can be

obtained experimentally [38,39].

It should be noted that with these parameters pulses have

a half-cycle unipolar form, their length is less than the

field period, therefore for such short pulses values of the

parameter ω and wavelength λa have conventional meaning.

Figure 4 illustrates the same as Fig. 2 at longer excitation

pulses τ = 0.3Tp = 134.6 as.

It can be seen from Figs 2 and 4, that there is a

complex spike dependence of populations on the delay

between pulses. The form of induced gratings at given

parameters differs from the simple harmonic form predicted

by formula (3). The behavior of populations, as can be seen

from the analysis of Figs 2 and 4, has similar type.

The behavior of population dependence on delay has a

complex spike form as well (Fig. 3). These dependencies

show the possibility of superfast control of bound states in

quantum wells and creation of inverse populations in wells

using a pair of attosecond pulses with variable delay.

Previously this possibility was shown in atom-molecular

systems [28–31]. The degree of population inversion, as can

be seen from Fig. 3, can be controlled by varying the delay

between pulses.

Conclusion

In this study, on the basis of numerical solution to

the time dependent Schr?dinger equation the possibility

is shown to create EMIGs and ultrafast control of state

populations in rectangular quantum wells with infinitely

high walls at coherent excitation of the system by a pair

of half-cycle attosecond pulses. These results show the

possibility to induce EMIGs by extremely short pulses in

multilevel media taking into account all medium levels,

which extends the previous results [20,26–31] obtained, as
noted above, in the low-level approximation or in the weak

field approximation.

A similar simple model of potential well with infinitely

high walls is used to describe different nanostructures. The

obtained results indicate the prospects to use the half-cycle

attosecond pulses with varied delay for ultrafast control of

populations in nanostructures based on quantum wells.

The possibility to create an inverse population can be

used to create laser generation in such systems. Also, the

inversion value can be controlled by changing the delay

between the pulses. Induced EMIGs can be used for

holographic recording with ultra-high time resolution using

sub-cycle attosecond pulses [40].
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