Physics of the Solid State
Volumes and Issues
Autowave Model of an Elastic-Plastic Transition in a Deformable Medium
Zuev L. B.1, Danilov V. I.1
1Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk, Russia
Email: lbz@ispms.ru

PDF
The conditions for the generation of autowaves of localized plasticity during the elastic-plastic transition in solids are considered. The similarity and difference between the deformation processes according to the Luders and Portevin-Le Chatelier mechanisms are analyzed and an explanation of these regularities is proposed, based on the introduction of concepts of active deformable media capable of generating switching autowaves and excitation autowaves. The conditions for the formation of such autowaves and the quantitative characteristics of the processes responsible for the transition to plastic deformation are considered. The relationship between the autowave characteristics and the rate of stretching during mechanical tests has been elucidated. Keywords: plasticity, dislocations, autowaves, Luders front, Portevin-Le Chatelier band.
  1. U. Messerschmidt. Dislocation Dynamics during Plastic Deformation. Springer, Berlin (2010). 503 p
  2. A. Argon. Strengthening Mechanisms in Crystal Plasticity. University Press, Oxford (2008). 404 p
  3. A. Ishii, S. Ogata. Int. J. Plasticity 8, 32 (2016)
  4. L.B. Zuev. Avtovolnovaya plastichnost. Lokalizatsiya i kollektivnye mody. Fizmatlit, M. (2018). 207 p. (in Russian)
  5. L.B. Zuev, S.A. Barannikova, V.I. Danilov, V.V. Gorbatenko. Prog. Phys. Met. 22, 3 (2021)
  6. J. Pelleg. Mechanical Properties of Materials. Springer, Dordrecht (2013). 634 p
  7. G.A. Malygin. FTT 34, 2356 (1992). (in Russian)
  8. A.A. Shibkov, M.F. Gasanov, M.A. Zheltov, A.E. Zolotov, V.I. Ivolgin. Int. J. Plasticity 86, 37 (2016)
  9. A.C. Iliopulos, N.S. Nikolaidis, E.C. Aifantis. Physica A 438, 506 (2015)
  10. K. Otsuka, X. Ren. Prog. Mater. Sci. 50, 511 (2005)
  11. A.Yu. Loskutov, A.S. Mikhailov. Osnovy teorii slozhnykh sistem. IKI, M.- Izhevsk (2007). 612 p. (in Russian)
  12. A.H. Kottrell. Dislokatsii i plasticheskoe techenie v kristallakh. Metallurgizdat, M. (1958). 267 p. (in Russian)
  13. C.A. Wert. Phys. Rev. 79, 601 (1960)
  14. P.Y. Manach, S. Thuillier, J.W. Yoon, J. Coer, H. Laurent. Int. J. Plasticity 58, 66 (2014)
  15. J.F. Hallai, S. Kyriakidis. Int. J. Plasticity 47, 1 (2013)
  16. H.B. Sun, F. Yoshida, M. Ohmori, X. Ma. Mater. Lett. 57, 4535 (2003)
  17. G. Nikolis, I. Prigozhin. Samoorganizatsiya v neravnovesnykh sistemakh. Mir, M. (1979). 512 p. (in Russian)
  18. F.R.N. Nabarro. Phys. Solid State. 42, 1417 (2000)
  19. D. Hudson. Statistika dlya fizikov. Mir, M. (1967). 242 p. (in Russian)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru