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Autowave Model of an Elastic-Plastic Transition in a Deformable Medium
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The conditions for the generation of autowaves of localized plasticity during the elastic-plastic transition in solids

are considered. The similarity and difference between the deformation processes according to the Lüders and

Portevin–Le Chatelier mechanisms are analyzed and an explanation of these regularities is proposed, based on

the introduction of concepts of active deformable media capable of generating switching autowaves and excitation

autowaves. The conditions for the formation of such autowaves and the quantitative characteristics of the processes

responsible for the transition to plastic deformation are considered. The relationship between the autowave

characteristics and the rate of stretching during mechanical tests has been elucidated.
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1. Introduction

Phenomenon of plastic deformation of solids continues

to be one of the problems in condensed matter physics.

The main barrier to understanding its nature is related to

the difficulty of understanding the relationship between the

micromechanisms of plastic flow, based on dislocation the-

ory and well developed by now [1,2], and the macroscopic

patterns of plastic deformation processes [3]. The latter

are manifested, in particular, in the non-linearity of the

dependence of the deforming stress σ on deformation ε,

i.e., in the shape of the plastic flow curve σ (ε).

A solution-oriented model of autowave plasticity [4]
considers plastic flow as an evolution of the deformation

localization pattern manifested by a change in autowave de-

formation modes. Experimentally observed autowaves have

a macroscopic scale (autowave length), and accounting for

their existence provides an explanation for many important

laws of plastic flow [5].

The intriguing stage in the development of autowave

plasticity is the elastic-plastic transition, after realization

of which the autowave mechanisms of the form alteration

process are activated, that is, various autowave modes of

localized plasticity [4] begin to be generated in a regular

manner. Examples of elastic-plastic transitions are the

Lüders and Portevin–Le Chatelier deformation processes,

whose dislocation mechanisms have been well studied by

now [6–9]. With the known differences between these

processes, there is a distinct similarity expressed, firstly,

in the proximity of the forms of the yield drop and a

separate deformation surge and, secondly, in the existence

of σ (ε) areas on the flow curves with the strain-hardening

coefficient dσ/dε < 0, corresponding to the yield drop or

deformation surge.

This paper contains a comparative analysis of the initial

development stage of autowave process of plastic flow,

i.e., the stage of elastic-plastic transition according to the

mechanisms of Lüders or Portevin–Le Chatelier bands

nucleation.

2. Lüders and Portevin–Le Chatelier
deformations. Experiment

The experimental part of the paper was performed on ma-

terials whose deformation clearly shows the named effects.

Lüders deformation was studied in alloys Fe−0.08wt.%C

(low carbon steel and ARMCO-iron), and Portevin–
Le Chatelier deformation — in alloys Al−4wt.%Cu and

Al−5wt.%Mg (D1 and AMg5 accordingly). All alloys

are deformed by dislocation sliding [6]. Some experiments

were performed on polycrystalline titanium nickelide (NiTi),
which is deformed by phase transformation B2→B19′ [10].
Mechanical stretching tests with recording of flow diagram

and determination of normal mechanical characteristics such

as upper σ
(u)
y and lower σ

(l)
y yield strengths, yield point

strain (Lüders deformation εpl) and surge deformation, were

synchronized with localized plasticity pattern registration

using the digital speckle photographic technique detailed in

the monograph [4]. This complemented the mechanical test

data with visual information on the development of localized

deformation. The combined use of the named techniques

made it possible to obtain quantitative data on the patterns

of Lüders and Portevin–Le-Chatelier band development,

coordinatedly analyzing the plastic flow curves σ (ε) and

the time dependences of the band positions, the initial data

for which are illustrated in Fig. 1, a, b.

One can identify signs of similarity and difference

between the macroscopic Lüders and Portevin–Le Chater-
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Figure 1. Development of Lüders and Portevin–Le Chatelier deformations. Stretching velocity 1.3 · 10−2 mm/s, interframe interval 2 s;

arrows — directions of fronts. Lüders band propagation in ARMCO-Fe (a); Portevin–Le Chatelier band propagation in AMg5 (b) alloy

.

lier deformation patterns. The similarity of these de-

formation processes consists in the fact that the growth

of bands of both types began with the sprouting of a

narrow band nucleus of ∼ 1.5−2mm width at rate of

Vnucl ≈ (1.2−4.0) · 10−3 m/s through the cross-section of

the sample under study. However, further development

of Lüders and Portevin–Le Chatelier deformation in the

deformed systems followed different scenarios.

Thus development of Lüders band after nucleation con-

sists in its symmetrical expansion (Fig. 1, a), i.e. the simulta-

neous movement of two Lüders fronts in opposite directions

with almost identical velocities VL ≈ (0.1−7) · 10−4 m/s,

depending on the number of simultaneously developing

bands and loading rate during testing. Thus, the width of

the Lüders band increases continuously during deformation.

Evolution of Portevin–Le Chatelier band after nucleus

formation (Fig. 1, b) is reduced to the movement of its

two fronts as a whole along the stretching axis at a

constant velocity VPLC ≈ (0.5−3) · 10−3 m/s, which, like VL,

depends on the deformation rate. At the same time, the

distance between the fronts (the width of the Portevin–
Le Chatelier band) δ ≈ 1.5−2mm remains constant during

the motion. Experimental measurements have shown that

the trailing front of the band lags behind the leading one by

tdel = δ/VPLC ≈ 1−2 s.

There is also a noticeable difference in the contrast

between the images of the moving fronts of Lüders and

Portevin–Le Chatelier. It follows from Fig. 1, a that the

two fronts of the same Lüders band have almost the same

contrast, while Fig. 1, b shows that the leading front of

the Portevin–Le Chatelier band looks significantly more

contrasted and narrower compared to the trailing front.

However, apart from the above, the most important

difference between Lüders and Portevin–Le Chatelier defor-

mations to be explained is this: Lüders front can pass over

the deformed sample only once, after which deformation

hardening begins, whereas the Portevin–Le Chatelier bands

are able to run over the sample many times during its

deformation [6–9].

3. Comparing Lüders
and Portevin–Le Chatelier
deformations

To understand the reasons for this difference, let us

compare the macroscopic patterns of Lüders and Portevin–
Le Chatelier deformations with the known literature data

on the kinetics of processes in active media, to which the

deformed medium [4,11] can be referred. As mentioned

above, Lüders front transfers the medium from a metastable

elastically deformable state to a stable plastically deformable

state. Such a transition can be realized only once in the

system, which explains the single passage of Lüders front

through the sample. Analysis of the deformation develop-

ment laws on the yield point during Lüders deformation

makes us consider the motion of Lüders front, using the

terms of the theory of autowave processes [11], as autowave
switching in a medium of bistable elements, irreversibly

changing the properties of this medium.

The kinetics of the process in Portevin–Le Chatelier

deformation turns out to be fundamentally different. In this

case, plastic flow begins at the leading front of the band,

apparently acting as a switching autowave. The trailing

front of Portevin–Le Chatelier band in this case acts as a

switching backward autowave [11], terminating deformation

and restoring the initial state of the medium. In such a

case, a multiple repetition of deformation events is obviously

possible. In autowave theory, such a synchronously

moving pair of fronts with different roles is considered

to be an excitation autowave in a medium of excitable
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elements [11], after passage of which the initial properties

of the medium are restored.

For the proposed explanation, it is possible to introduce

quantitative criteria defining the differences of autowave

switching and excitation processes for the discussed types

of deformation. For this purpose, it is feasible to introduce

refractoriness time τre f for them, i.e. the time during

which the medium remains indifferent to external influences

and only an internally given sequence of transitions [11]
occurs therein. Refractoriness time as a natural quantitative

characteristic of the autowave process is commonly used

for excitation autowaves, but there are no obstacles to

extending this concept to switching autowaves. Since the

deformation modes in the described experiments for Lüders

and Portevin–Le Chatelier deformation are the same, the

possible difference in times should reflect the difference in

the micromechanisms of the plastic flow.

For Lüders deformation, existence of metastable elasti-

cally deformed state at stresses σ < σ
(u)
y is explained by

deficit of mobile dislocations because of their blocking

by condensed atmospheres of carbon atoms [12]. Stable

plastically deformable state occurs after dislocation breaks

away from atmospheres at σ = σ
(u)
y . In this case the

refractoriness time may be the period required for repeated

blocking of released dislocations by condensed atmospheres

(time of post-deformation ageing [12]). This process is

controlled by diffusion of carbon to dislocations in the mesh

α-Fe, and its duration may be assessed using a known

diffusion ratio

τ
(L)

re f ≈
(3)2

2DC
≈

ρ−1

2DC
, (1)

where ρ = 1014 m−2 — density of dislocations [12],
which determines diffusion wave by ratio 3 = ρ−1/2.

At T = 300K carbon diffusion coefficient in α-Fe

DC ≈ 5.6 · 10−21 m2/s [13], so that in accordance with

equation (1), blocking is restored for the refractoriness

time of Lüders deformation τ
(L)

re f ≈ 106 s. It must be

compared to specific time of experiment, for example, with

specific time of Lüders front passage along sample length

tex p ≈ 102−103 s, measured in experiments. Besides, for all

cases of Lüders deformation τ
(L)

re f ≫ tex p or τ
(L)

re f /τex p ≫ 1.

This means that the deformed medium does not have time

to return to the initial state during the experiment, and for

this reason, the Lüders front passage through the sample is

performed only as a single act.

To estimate refractoriness time of Portevin–Le Chatelier

process, it is not necessary to use the dislocation mod-

els [7–9] available in the literature. Here we can use

the value tdel = δ/VPLS ≈ 1−2 s as the refractoriness time,

assuming that τ
(PLS)

re f ≈ tdel . Fairness of such conclusion is

justified by the fact that the elastic properties of the medium

are restored after Portevin–Le Chatelier band trailing front

has passed through it. This is indicated by invariability

of deformation surge shape during subsequent passages of

the Portevin–Le Chatelier bands. Small refractoriness time

explains the multiple deformation surges by the fact that

at the leading front of Portevin–Le Chatelier bands the

dislocations become mobile, while at the trailing front the

initial state of the medium is restored. Such a process

can be repeated many times. Difference in the structure

of the leading and trailing fronts (Fig. 1, b) is related to their

different role in deformation.

It is then obvious that the condition τ
(PLC)

re f ≪ τex p or

τ
(PLC)

re f /τex p ≪ 1 is fulfilled in the Portevin–Le Chatelier

deformation. We can assume that inequalities τ
(L)

re f /τex p ≫ 1

and τ
(PLC)

re f /τex p ≪ 1 are the criteria by which the system

chooses alternative realizations of Lüders or Portevin–
Le Chatelier effects. Different nature of autowave flow

processes during these effects is a consequence of different

refractoriness times of the processes, i.e., the inequality

τ
(L)

re f ≫

tau(PLC)
re f . In turn, absolute values of refractoriness times

are determined by the different nature of microscopic

dislocation acts of plastic deformation for the cases under

consideration.

To verify these considerations, deformation experiments

were performed at T = 400K. At this temperature, carbon

diffusion coefficient increases to DC ≈ 2.4 · 10−17 m2/s, and

refractoriness time calculated from equation (1) decreases

accordingly to τ
(L)

re f ≫ 4 · 102 s. This value is commensurate

with tex p ≈ 102−103 s, and condition τ
(L)

re f ≫ tex p is changed

to equality τ
(L)

re f ≈ tex p. In full accordance with this

estimation, deformation of Fe-C alloy on the yield point

at T = 400K results in a surge-like deformation, i.e., the

Portevin–Le Chatelier type effect is realized.

4. Quantitative patterns of Lüders
deformation

When several Lüders bands nucleate and develop in a

sample simultaneously or sequentially, the rule is followed

for them,
N

∑

i=1

|V i
L| = V6 = const, (2)

where |V i
L| — velocity modulus of the i-moving Lüders

front, and N — number of simultaneously moving fronts.

According to the experimental results obtained, value of the

constant V6 in equation (2) depends on the rate of sample

stretching Vmach. Nucleation of new Lüders bands in the

course of deformation at Vmach = const is accompanied by

such autotuning of existing fronts velocities that the rule (2)
is satisfied. Obviously, the rule is equivalent to the condition

of constancy of the growth rate of the plastically deformed

area during Lüders deformation.

Explanation of the meaning of rule (2) is based on

natural assumption that the total plastic deformation growth

in the two fronts produced by the formation of a single

Lüders band may not be sufficient to maintain the constant

deformation rate given by the testing machine. In such
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Figure 2. Dependence of Lüders deformation on stretching

velocity; NiTi (1), Fe (2), ARMCO-Fe (3).

a case, the medium to be deformed must either collapse

or generate new Lüders bands and, consequently, new

deformation fronts. Cumulative deformation in the new set

of fronts ensures the steady development of the plastic flow

process.

As shown by experimental results, kinetic characteristics

of the bands and Lüders fronts depend on stretching velocity

of the test Vmach. A formal relationship between the

velocities VL and Vmach can be established by equating the

front travel time along the sample length (L + δL)/VL to the

time it takes to lengthen sample δL/Vmach. Here L — initial

length of the sample, and δL — its absolute elongation when

deformed by Lüders. Assuming that Lueders deformation

εpl ≈ δL/L, we obtain

L + δL
VL

=
δL

Vmach
. (3)

Since δL ≪ L, ratio (3) can be written as

VL ≈

(

1 +
L
δL

)

Vmach ≈ (1 + ε−1
pl )Vmach. (4)

Usually 0.01 ≤ εpl ≤ 0.03, that is, VL ≈ (10−30)Vmach,

which corresponds to observed Lüders front velocities

in experiments [6,14–16]. At the same time Lüders

deformation and stretching velocity are linearly related, and

the experimentally found ratio for iron looks like

ε
(Fe)
pl = 0.02 +

Vmach

V (Fe)
0

, (5)

where V (Fe)
0 ≈ 0.6 · 10−3 m/s. For titanium nickelide this

dependence looks like

ε
(NiTi)
pl = 0.014 +

Vmach

V (NiTi)
0

, (6)

where V (NiTi)
0 ≈ 1.1 · 10−3 m/s. Constants V (Fe)

0 and V (NiTi)
0

in ratios (5) and (6) by order of value are close to exper-

imental values of Lüders bands nuclei growth velocities in

Fe and NiTi, i.e. V (Fe)
0 ≈ V (NiTi)

0 ≈ Vnucl .

To confirm nature of linear dependences (6) and (7), let
us solve equation (5) relative to Lüders deformation εpl

εpl =
1

VL/Vmach − 1
. (7)

Functions εpl(Vmach) are shown in Fig. 2 in coordinates

εpl − (VL/Vmach − 1)−1 . Since VL/Vmach ≫ 1, from equa-

tion (7), as in [16], εpl ∼ Vmach follows.

Dependence of observed Lüders fronts n f on loading

velocity shown on Fig. 3, a also finds explanation in

the autowave plasticity model. Saturation of dependence

n f (Vmach) at n f ≈ 5 is related to existence of minimum

size of medium λ, where dissipative (localization) struc-

tures [17] may arise. This size is determined by equality of

autowave process period and specific diffusion time, which

results in simple ratio of
”
diffusion“ type λ ≈ (2ϒτ )1/2.

It includes specific time of autowave process of plastic

deformation τ ≈ 103 s and transport coefficient of local

deformation redistribution in plastically deformed medium

ϒ ≈ 10−7 m2/s [4]. Estimation gives λ ≈ 10−2 m, and since

working length of samples ∼ 5 · 10−2 m, the maximum

number of Lüders fronts, which could be observed at such

experiment conditions, n f ≤ 5. From Fig. 3, b it follows

that ascending branch of dependence n f (VMach) looks like

ln(1− n f /5) ∼ VMach, i.e.

n f ∼ const− exp

(

−
Vmach

V0

)

. (8)

Here, as shown above when discussing equations (5)
and (6), V) ≈ Vnucl, which underlines relationship of kinetic

parameters of Lüders fronts.

To determine specific type of Lüders front velocity

dependence on sample stretching velocity, several experi-

ments were conducted on materials, deformation of which

is implemented to form Lüders bands and fronts (Fe,
ARMCO-Fe, NiTi). Dependences VL(Vmach) produced in

these experiments and shown on Fig. 4 are approximated

by weakly non-linear function

VL = KV n
mach = K′

(

Vmach

V0

)n

, (9)

where parameter 〈n〉 = 0.9± 0.1 < 1 is averaged by three

investigated materials. In equation (9) empirical coeffi-

cient K′ = KV n
0 ≈ 0.04m/s, if one believes, as above, that

V0 ≈ Vnucl ≈ 10−3 m/s.
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Figure 3. Dependence of number of Lüders fronts in Fe on stretching rate: in coordinates n f −Vmach (a); in coordinates
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velocity: NiTi (1), Fe (2), ARMCO-Fe (3).

To explain physical nature of detected non-linearity of

function VL(Vmach), let us characterize growth of Lüders

front dVL in increase of stretching velocity by dVmach of

derivative dVL/dVmach. Let it, as in [18], this derivative is

proportionate to ratio of energy flows dissipated in motion

of Lüders front NL = σ
(l)
y VL at lower yield point at σ = σ

(l)
y

and arriving from loading device Nmach = σ
(u)
y Vmach at upper

yield point at σ = σ
(u)
y . Then,

dVL

dvmach
∼

NL

Nmach
=

σ
(l)
y VL

σ
(u)
y Vmach

. (10)

It is easy to see that in the right part of equation (10) size
of products [σ ·V ] = (N ·m−2) · (m · s−1) = J·m−2·s−1 ac-

tually complies with energy flows. Separating variables in

equation (10), we get equation

dVL

VL
∼

σ
(l)
y

σ
(u)
y

dVmach

Vmach
, (11)

from which the ratio follows

lnVL ∼
σ

(l)
y

σ
(u)
y

lnVmach, (12)

leading to parabolic dependence VL ∼ V m
mach. For indica-

tor m one may accept that

m =
σ

(l)
y

σ
(u)
y

< 1, (13)

since σ
(l)
y < σ

(u)
y . Value 〈m〉 = 〈σ

(l)
y /σ

(u)
y 〉 = 0.94± 0.03

averaged by data of all conducted experiments may be

compared to the above value of indicator 〈n〉 = 0.9± 0.1

in equation (9). For this purpose it is necessary to apply

the standard statistical procedure of averages — Fig. 4.

Lüders front motion velocity depending on loading velocity:

NiTi (1), Fe (2), ARMCO-Fe (3) [19]. It turned out that

difference in indicators 〈n〉 and 〈m〉 is statistically negligible,

so that use of ratio 〈n〉 = 〈σ
(l)
y /σ

(u)
y 〉 is permissible. Such

estimates confirm results produced by authors [16] who

believed that VL ∼ Vmach.

5. Conclusion

Consistent development of autowave representations

about the nature of plastic flow made it possible to explain

the difference in the kinetics of Lüders bands and Portevin–
Le Chatelier bands development and to demonstrate that it

is associated with the difference in mechanisms of active

deformed media response to external mechanical influence.
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This difference entails bistability of the deformed medium

with the possibility of Lüders band nucleation or excitability

of the medium capable of generating Portevin–Le Chatelier

bands.

Accordingly, Lüders deformation is equivalent to genera-

tion and propagation of a switching autowave in a sample.

Portevin–Le Chatelier deformation, which differs from it,

can be interpreted as the propagation of the excitation

autowave in the deformed medium.

In quantitative sense, bistable and excitable media

and, accordingly, switching and excitation autowaves are

characterized by different refractoriness times, which, in

turn, are uniquely determined by the micromechanisms of

elementary plasticity acts in deformable materials. Thus, a

quantitative relationship between autowave and dislocation

models of plastic flow is established. The developed

approach also makes it possible to explain alteration of de-

formation modes, for example, when temperature changes,

and to understand the nature of a number of quantitative

dependences characteristic of the kinetics of Lüders and

Portevin-Le Chatelier bands.

Funding

The paper was prepared as part of the state assignment

of the Institute of Strength Physics and Materials Science

of the Siberian Branch of the Russian Academy of Science,

subject No. FWRW-2021-0011.

Conflict of interest

The authors declare that they have no conflict of interest.

References

[1] U. Messerschmidt. Dislocation Dynamics during Plastic De-

formation. Springer, Berlin (2010). 503 p.

[2] A. Argon. Strengthening Mechanisms in Crystal Plasticity.

University Press, Oxford (2008). 404 p.

[3] A. Ishii, S. Ogata. Int. J. Plasticity 8, 32 (2016).
[4] L.B. Zuev. Avtovolnovaya plastichnost. Lokalizatsiya i kollek-

tivnye mody. Fizmatlit, M. (2018). 207 p. (in Russian).
[5] L.B. Zuev, S.A. Barannikova, V.I. Danilov, V.V. Gorbatenko.

Prog. Phys. Met. 22, 3 (2021).
[6] J. Pelleg. Mechanical Properties of Materials. Springer, Dor-

drecht (2013). 634 p.

[7] G.A. Malygin. FTT 34, 2356 (1992). (in Russian).
[8] A.A. Shibkov, M.F. Gasanov, M.A. Zheltov, A.E. Zolotov,

V.I. Ivolgin. Int. J. Plasticity 86, 37 (2016).
[9] A.C. Iliopulos, N.S. Nikolaidis, E.C. Aifantis. Physica A 438,

506 (2015).
[10] K. Otsuka, X. Ren. Prog. Mater. Sci. 50, 511 (2005).
[11] A.Yu. Loskutov, A.S. Mikhailov. Osnovy teorii slozhnykh

sistem. IKI, M.- Izhevsk (2007). 612 p. (in Russian).
[12] A.H. Kottrell. Dislokatsii i plasticheskoe techenie v kristallakh.

Metallurgizdat, M. (1958). 267 p. (in Russian).
[13] C.A. Wert. Phys. Rev. 79, 601 (1960).
[14] P.Y. Manach, S. Thuillier, J.W. Yoon, J. Coër, H. Laurent. Int.
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