Features of the Band Structure and the Mechanism of Lateral Photoconductivity in Hybrid Structures T/SiO2/Si(T=Fe,Fe3O4, TiO2)
Pisarenko T. A.1,2, Korobtsov V. V. 1, Dimitriev A. A. 1,2, Balashev V. V. 1,3,2, Zheleznov V. V. 4
1Institute of Automation and Control Processes, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
2Far Eastern Federal University, Vladivostok, Russia
3V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences, Vladivostok, Russia
4Institute of Chemistry, Far East Branch, Russian Academy of Sciences, Vladivostok, Russia
Email: tata_dvo@iacp.dvo.ru, balashev@mail.dvo.ru

PDF
This paper presents the results of studying the lateral photovoltaic effect in hybrid structures based on SiO2/Si depending on the nature of the conductivity of the material of the upper layer (Fe is a metal, Fe3O4 is a semimetal, TiO2 is a semi-insulator). It is shown that this effect is observed in hybrid structures in which a depleted region with a significant band bending is formed at the SiO2/Si interface. Theoretical calculations of the lateral photovoltage based on the energy parameters of the band diagrams showed that an increase in the sensitivity of the lateral photoelectric effect is associated with an increase in the built-in potential at the SiO2/Si interface. It has been established that the transient characteristics of the lateral photoelectric effect, such as the rise and fall times of the photovoltage signal, are determined by the configuration of the RC-filter in the near-contact region, which depends on the conductivity of the upper layer. It is shown that, in the case of the lateral photovoltaic effect, current transfer occurs along the inversion layer, and the upper layer serves to generate a quasi-p-n junction at the SiO2/Si interface. Keywords:lateral photovoltaic effect, hybrid structures, iron, magnetite, titanium dioxide.
  1. J.T. Wallmark. Proc. IRE 45, 4, 474 (1957)
  2. G. Lucovsky. J. Appl. Phys. 31, 6, 1088 (1960)
  3. S.M. Sze, K.K. Ng. Physics of semiconductor devices. John Wiley \& Sons, N.Y. (2006). P. 832
  4. T. Shikama, H. Niu, M. Takai. Jpn.. J. Appl. Phys. 23, 10R, 1314 (1984)
  5. P.P. Konorov, Yu.A. Tarantov. V sb.: LSU Academic Notes. Ser. fiz. 370, 17, 114 (1974)
  6. E. Fortunato, G. Lavareda, R. Martins, F. Soares, L. Fernandes. Sens. Actuat. A 51, 135 (1996)
  7. D.J.W. Noorlag. Lateral-photoeffect position-sensitive detectors. Ph.D. Thesis. Delft University of Technology, Delft, The Netherlands (1982). P. 211
  8. J. Henry, J. Livingstone. J. Phys. D 41, 16, 165106 (2008)
  9. S.Q. Xiao, H. Wang, C.Q. Yu, Y.X. Xia, J.J. Lu, Q.Y. Jin, Z.H. Wang. New J. Phys. 10, 3, 033018 (2008)
  10. H. Wang, S.Q. Xiao, C.Q. Yu, Y.X. Xia, Q.Y. Jin, Z.H. Wang. New J. Phys. 10, 9, 093006 (2008)
  11. C. Yu, H. Wang. Sensors 10, 11, 10155 (2010)
  12. L.Z. Hao, Y.J. Liu, Z.D. Han, Z.J. Xu, J. Zhu. J. Alloys Compd. 735, 88 (2018)
  13. S. Qiao, B. Liang, J. Liu, G. Fu, S. Wang. J. Phys. D 54, 153003 (2021)
  14. X. Wang, B. Song, M. Huo, Y. Song, Z. Lv, Y. Zhang, Y. Wang, Y. Song, J. Wen, Y. Sui, J. Tang. RSC Advances 5, 80, 65048 (2015)
  15. B. Song, X. Wang, B. Li, L. Zhang, Z. Lv, Y. Zhang, Y. Wang, J. Tang, P. Xu, B. Li, Y. Yang, Y. Sui, B. Song. Opt. Exp. 24, 21, 23755 (2016)
  16. T.A. Pisarenko, V.V. Balashev, V.A. Vikulov, A.A. Dmitriev, V.V. Korobtsov. FTT 60, 7, 1311 (2018) (in Russian)
  17. T.A. Pisarenko, V.V. Balashev, V.V. Korobtsov, A.A. Dimitriev, V.A. Vikulov. Defect Diffusion Forum 386, 137 (2018)
  18. X. Wang, X. Zhao, C. Hu, Y. Zhang, B. Song, L. Zhang, W. Liu, Z. Lv, Y. Zhang, J.Tang, Y. Sui, B. Song. Appl. Phys. Lett. 109, 2, 023502 (2016)
  19. A.K. Dutta, Y. Hatanaka. Solid-State Electron. 32, 6, 485 (1989)
  20. C. Narayanan, A.B. Buckman, I. Busch-Vishniac, W. Wang. IEEE Transact. Electron Devices 40, 9, 1688 (1993)
  21. G. Prestopino, M. Marinelli, E. Mitani, C. Verona, G. Verona-Rinati. Appl. Phys. Lett. 111, 14, 143504 (2017)
  22. H. Kobayashi, Asuha, O. Maida, M. Takahashi, H. Iwasa. J. Appl. Phys. 94, 11, 7328 (2003)
  23. D.P. Opra, S.V. Gnedenkov, S.L. Sinebryukhov, A.B. Podgorbunsky, A.A. Sokolov, A.Yu. Ustinov, V.G. Kuryavy, V.Yu. Mayorov, V.V. Zheleznov. Electrochemical Energy 19, 3, 123 (2019)
  24. V.V. Balashev, V.V. Korobtsov. ZhTF 88, 1, 75 (2018). (in Russian)
  25. V.V. Balashev, V.V. Korobtsov, T.A. Pisarenko, L.A. Chebotkevich. ZhTF 81, 10, 122 (2011) (in Russian)
  26. A.M. Cowley, S.M. Sze. J. Appl. Phys. 36, 10, 3212 (1965)
  27. S. Ghosh, P.C. Srivastava. J. Electron. Mater. 43, 11, 4357 (2014)
  28. M. Fonin, R. Pentcheva, Yu.S. Dedkov, M. Sperlich, D.V. Vyalikh, M. Scheffler, U. Rudiger, G. Guntherodt. Phys. Rev. B 72, 104436 (2005)
  29. Z. Zhao, Z. Li, Z. Zou. J. Phys.: Condens. Matter 22, 17, 175008 (2010)
  30. A. Kiejna, T. Pabisiak, S.W. Gao. J. Phys.: Condens. Matter 18, 17, 4207 (2006)
  31. B.L. Sharma, R.K. Purohit. Semiconductor heterojunctions. Pergamon Press, Oxford (1974). P. 224
  32. J. Lias, S.A. Shahadan, M.S.A. Rahim, N. Nayan, M.K. Ahmad, M.Z. Sahdan. J.Teknologi. 78, 10, 1 (2016)
  33. X. Huang, C. Mei, J. Hu, D. Zheng, Z. Gan, P. Zhou, H. Wang. IEEE Electron Device Lett. 37, 8, 1018 (2016)
  34. J. Dai, L. Spinu, K.Y. Wang, L. Malkinski, J. Tang. J. Phys. D 33, 11, L65 (2000)
  35. S. Liu, C.Q. Yu, H. Wang. IEEE Electron Device Lett. 33, 3, 414 (2012)
  36. C.Q. Yu, H. Wang, Y.X. Xia. Appl. Phys. Lett. 95, 26, 263506 (2009)
  37. W.S. Levine. The control handbook. Jaico Publishing House, Mumbai (1999).V. 1. P. 158
  38. K. Lehovec, A. Slobodskoy. Solid-State Electron. 7, 1, 59 (1964)
  39. T.A. Pisarenko, V.V. Korobtsov, V.V. Balashev, A.A. Dimitriev. Solid State Phenomena 312, 92 (2020)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru