Effect of SrTiO3, KTaO3, and LiTaO3 modifier on the dielectric properties of Ca0.3Ba0.7Nb2O6 ceramics
Malyshkina O.V. 1, Guseva O.S.2, Mitchenko A. S.1, Kislova I. L. 1
1Tver State University, Tver, Russia
2Tver State Medical University, Tver, Russia
Email: Olga.Malyshkina@mail.ru, 4ikulaeva@mail.ru, asmitchenko@edu.tversu.ru, inkis@mail.ru

PDF
Using the method of solid-phase synthesis, we obtained ceramic samples with a structure like tetragonal tungsten bronzes, pure Ca0.3Ba0.7Nb2O6 (CBN30) and with modifying additives SrTiO3, KTaO3, or LiTaO3. The dispersion of the permittivity in the frequency range from 1 Hz to 10 MHz, the temperature dependences of the permittivity (in the given frequency range) and the pyroelectric coefficient are studied. It is shown that if the introduction of the LiTaO3 impurity into the composition of CBN30 destabilizes the dielectric characteristics at frequencies above 100 kHz, then the SrTiO3 impurity increases both the permittivity and the pyroelectric coefficient, significantly reducing dielectric losses at low (1-10 Hz) frequencies. At the same time, both of these impurities (SrTiO3 and LiTaO3) lead to sample depolarization during heating above 150oC, while the KTaO3 impurity, which slightly increases the permittivity and pyroelectric coefficient, does not affect the stability of the polarized state during heating up to higher temperatures. Keywords: piezoelectric ceramics, barium-calcium niobate, lead-free materials, permittivity dispersion, pyroelectric effect.
  1. J. Rodel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic. J. of the European Ceramic Society 35, 6, 1659 (2015)
  2. B. Malic, J. Koruza, J. Hrescak, J. Bernard, K. Wang, J. Fisher, A. Bencan. Materials 8, 8117 (2015)
  3. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, et al. Nature 432, 7013, 84 (2004)
  4. L.E. Cross. Nature 432, 7013, 24 (2004)
  5. J. Wu, D. Xiao, J. Zhu. Chem. Rev. 115, 7, 2559 (2015)
  6. Sh. Zhang, R. Xia, Th.R. Shrout. J. Electroceram. 19, 251 (2007)
  7. K. Okazaki. Ceramic engineering for dielectrics. Tokyo, (1969)
  8. R.R. Neurgaonkar, J.R. Oliver, L.E. Cross. Ferroelectrics 56, 31 (1984)
  9. WF. Ainger, W.P. Bickley, G.V. Smith. Proc. Brit. Ceram. 18, 221 (1970)
  10. Yingbang Yao, Kailong Guo, Daoguang Bi, Tao Tao, Bo Liang, C.L. Mak, S.G. Lu. Journal of Materials Science: Materials in Electronics 29, 17777 (2018)
  11. A.V. Es'kov, A.S. Anokhin, M.T. Bui, O.V. Pakhomov, A.A. Semenov, P.Yu. Belyavskiy, A.B. Ustinov. IOP Conf. Series: Journal of Physics: Conf. Series 1038, 012115 (2018)
  12. H. Chena, Sh. Guo, Ch. Yao, X. Dong, Ch. Mao, Ge. Wang. Ceramics International 43, 3610 (2017)
  13. B. Li, D. Wang, G. Chen, X. Liu, Ch. Yuan. Journal of Materials Science: Materials in Electronics 30, 19262 (2019)
  14. O.V. Malyshkina, V.S. Lisitsin, J. Dec, T. ukasiewicz. Physics of the Solid State 56, 9, 1824 (2014)
  15. Sh. Ke, H. Fan, H. Huang, H.L.W. Chan, Sh. Yu. Journal of Applied Physics 104, 024101 (2008)
  16. M. Esser, M. Burianek, D. Klimm, M. Muhlberg. J. of Crystal Growth 240, 1-2, 1 (2002)
  17. O.S. Guseva, O.V. Malyshkina, A.I. Ivanova, K.N. Boitsova. Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials 13, 85 (2021)
  18. H. Remy. Lehrbuch derAnorganischen Chemie. Leipzig. (1960)
  19. O.V. Malyshkina, A.A. Movchikova, R.M. Grechishkin, O.N. Kalugina. Ferroelectrics 400, 63 (2010)
  20. R.M. Grechishkin, O.V. Malyshkina, N.B. Prokofieva, S.S. Soshin. Ferroelectrics 251, 207 (2001).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru